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Preface

Albert Einstein wondered, “How can it be that mathematics,
being after all a product of human thought which is indepen-
dent of experience, is so admirably appropriate to the objects
of reality?”1

January 27, 1921, address to the Prussian Academy of Science,
Berlin.

Objective of the Book

A gap between problem-solving in mathematics and scientific inquiry in science is
beyond controversy. Attempts to elevate the gap are made and this book aspires to be
one of such attempts. The book is to promote transdisciplinary STEM learning
experiences that support the thesis that exploring mathematics concepts using
scientific methods can help to merge the two methodologies. Furthermore, it is
hoped that such learning settings are to develop students’ mathematical reasoning
skills and serve as a means to improve students’ STEM readiness.

The objective of this book is to propose a theoretical framework and
multidisciplinary modeling activities of what STEM learning in the twenty-first
century classroom might look like.

This book draws on a diverse literature from international STEM education
community as well as from engineering, science, and mathematics education com-
munities. It synthesizes the research findings that lead to formulating a theoretical
framework on how to develop students’ mathematical reasoning while simulta-
neously exercise scientific inquiry. Several case studies were designed to test the
framework and their findings were summarized. These case studies include detailed
instructional supports that were to guide students through the process of merging

1Einstein, A. (1914). Principles of theoretical physics, inaugural address before the Prussian
Academy of Sciences, 1914. Reprinted in Einstein, A. (1973). Ideas and opinions (pp. 221–223).
London: Souvenir Press.
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mathematical and scientific reasonings in a coherent STEM inquiry. The book can be
considered as a resource for STEM education students, researchers, and practitioners
seeking to develop transdisciplinary learning experiences.

Structure of the Book

The book consists of two main parts. Part 1 contains six chapters and discusses
underpinnings of STEM experiences that lead to a formulation of an integrated
theoretical framework. Part 2 comprises four chapters with four STEM projects
designated for precalculus and calculus students during which the theoretical frame-
work was put in practice and the outputs discussed.

In Chap. 1, general foundations of integrated learning are discussed, and an
argument that STEM students’ readiness can be initiated from developing their
mathematical reasoning skills using scientific contexts before engaging in engineer-
ing designs is posited. Chapter 2 delves more in depth into the current findings on
integrated science and mathematics learning and establishes this learning setting as a
viable foundation for developing students’ STEM competency. STEM learning is
strongly supported by representations. Chapter 3 is dedicated to discussing learning
effects of using representations in school practice and their effects on STEM practice.
While there are various ways of designing and performing STEM activities when
representations are enabled, modeling is being used in all of the STEM component
disciplines. Chapter 4 zooms into the underlying principles of modeling in biology,
physics, chemistry, mathematics, and engineering. It also discusses ways of integrat-
ing technology in STEM learning environment. Chapter 5 focuses on synthesizing
research findings on using scientific methods in STEM practice. The ultimate goal of
this chapter is to seek ways of bridging problem-solving in mathematics with
scientific methods. A culminating phase of Part 1 of the book is Chap. 6 that suggests
a theoretical framework for merging mathematical reasoning with scientific methods.
Intertwining of these methodologies along with applying it in practice is discussed.

Part 2 of the book opens up with Chap. 7 that contains a case study about
constructing an exponential model for a bouncing ball and using it to model the
law of conservation of energy. Extracting properties of an exponential behavior from
that context revealed new knowledge about interpretation of the base of exponential
decay that does not parallel with its traditional view. Chapter 8 is about using the
idea of function continuity to support constructing a piecewise position function of
the simulated motion of a walking man. The fact that position function must be
continuous and differentiable is not emphasized in calculus nor physics textbooks.
Applying the principle of continuity in real life highlighted the importance of
studying the principles and revealed interpretations that do not surface in traditional
context-free textbook problems. The concept of function transformations used as a
tool to produce new functions based on parent function was explored in Chap. 9. By
being situated in a simulated environment of projectile motion, this activity revealed
that parent function does not necessarily have to be expressed in its traditional

vi Preface
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standard form. The simulation also disclosed certain limitations of applying func-
tions transformation in real contexts that do not surface in typical textbook questions.
Investigating function rate of change and using it to optimizing area enclosed by a
perimeter of a fixed length was the primary objective of the activity included in
Chap. 10. While traditional textbook problems ask for unique values that optimize
the quantity of interest, this activity offered students the opportunity of constructing
functions, exploring their properties and then optimizing the quantity while
reflecting on the conducted lab. General conclusions and suggestions for further
research conclude each chapter.

Tomball, TX Andrzej Sokolowski
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Chapter 1
STEM Education: A Platform
for Multidisciplinary Learning

Abstract This chapter summarizes general purposes, the learning settings, and
the outcomes of using the STEM as a platform for multidisciplinary learning.
By encompassing several disciplines, mathematics, physics, chemistry, biology,
technology, and engineering, exercising STEM activities posit specific challenges.
These challenges are especially visible in high school where students learn contents
of STEM subjects in uncorrelated manners. While exercising multidisciplinary
STEM activities during extra designed instructional units would be the most effi-
cient, this approach might be problematic to put in practice. Therefore, alternative
routes of exercising STEM learning experiences are sought. In this chapter, a
framework for an alternative route is suggested and its general theoretical underpin-
nings discussed. Attention is given to research findings on ways of exercising
scientific inquiry and mathematical reasoning in STEM practice. These ideas will
also be further discussed in the next chapters.

1.1 STEM Learning Designs

Due to a broad range of aims in educational research and practice, the acronym
STEM has multiple definitions. Moore et al. (2014) described STEM as an effort to
link some or all the four disciplines of science, technology, engineering, and
mathematics into one unit that is based on connections between these and real-
word problems. McComas (2014) defined STEM as an interdisciplinary approach to
learning that integrates academic concepts with real-world situations. Sanders
(2009) described integrated STEM education as proposals that explore teaching
and learning between or among any two or more of the STEM subject areas.
National Science Foundation defined STEM as the integration of subjects, which
include not only the standard disciplines of mathematics, natural sciences, engineer-
ing, computer, and information sciences, but also social and behavioral sciences,
economics, sociology, and political science (Green 2007).

A large range of STEM interpretations is followed by a high diversity of
organizing and delivering these integrated learning experiences to students. These
settings vary and one of them, called multidisciplinary, is about applying knowledge
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and skills learned from two or more disciplines to help enhance the learning
experience (Vasquez et al. 2013). For example, the idea of periodic functions,
from trigonometry, might be integrated with periodical processes studied in biology
or physics where students would use real data to construct such functions and learn
more about the system behavior. Similarly, the fundamental theorem of calculus
might be applied to kinematics to support the idea that accumulation under the graph
represents the change of object’s position. Such integrated projects can be conducted
in math or science classes depending on the content emphasis. In addition to
enhancing the learning of the involved subjects, they can provide opportunities for
creating new knowledge.

STEM activities can also be classified depending on the form of the final product.
For instance; they can lead to formulating a mathematical model of a phenomenon,
or be of a form of a theoretical design, or a lead to constructing of an artifact.
The nature of the final product depends on the objective of the activity, the time
devoted to its completion, and available resources. The form of the final product
will support the contents of the involved subjects and amplify the methods of
learning. If the final product is an algebraic representation, the effort will evolve
around primarily using the attributes of algebraic functions and map them into
the observed behavior of the system under investigation. If the final product is
an artifact, technical skills will be promoted with applications of algebraic
algorithms.

While STEM epistemological framework is rooted in the various disciplines,
students’ learning can also take different routes; the learning can be teacher- or
student centered. STEM activities can be assigned as team projects defined as a
process of working collectively to achieve a common objective or as individual
projects. Research shows that teamwork produces higher learning effects when
compared to individual work because: (a) most engineering designs is done coop-
eratively, not individually, and technical skills are sometimes equally important as
interpersonal skills (Felder et al. 2000); (b) scientists work mostly in groups and less
often as isolated investigators, thus similarly, students should gain experience
sharing responsibility for learning with each other; (c) cooperative and team learning
appears to be the most thoroughly researched instructional methods in all structures
of education, (see, e.g., Alters and Nelson 2002). Springer et al. (1999) meta-
analyzed STEM learning outcomes and found out that STEM-related cooperative
learning promotes greater academic achievement and more favorable attitudes
toward learning than traditional students-centered teaching. Thus, communication
and teamwork should be prioritized during STEM projects. In such learning, stu-
dents communicate and discuss thus learn how to convey their arguments to their
peers using the language of science, mathematics, or engineering. Team members
tend to share knowledge and complement each other’s skills which can produce a
higher quality of the final projects.
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1.2 Learning Outcomes Achieved Using STEM Learning
Settings

There are several educational objectives that can be achieved using a multi-
disciplinary learning environment: (a) promoting awareness of the roles of science,
technology, engineering, and mathematics in modern society; (b) enhancing famil-
iarity with at least some of the fundamental concepts from each area; (c) allowing for
integrating different teaching methods; (d) promoting active learning (Felder et al.
2000); (e) fostering students’ mathematical and scientific reasoning. Among these,
using the STEM to promoting active learning is one of the main educational
objectives because research shows (Cabrera and Cabrera 2005) that people acquire
and retain knowledge and skills more efficiently through practice. While a straight
lecturing may succeed at promoting short-term factual recall, active learning pro-
motes long-term retention of information, comprehension, motivation to learn, and
subsequent interest in the subject. STEM education also provides multiple opportu-
nities to link scientific inquiry by formulating hypotheses that are proved or
disproved through investigations before students engage in the engineering designs
to solve problems (Kennedy and Odell 2014). Findings from preliminary studies
(Honey et al. 2014) suggested that integration can lead to improved conceptual
learning in the disciplines and that the effects differ depending on: (a) the nature of
the integration, (b) the outcomes measured, and (c) the students’ prior knowledge
and experience. Another view by Koedinger et al. (2012) posited that integrated
approaches benefit those individuals who already possess some knowledge pertinent
to the integrated concepts, as compared to individuals with limited knowledge or less
adept at building connections among conceptual structures.

Along with an increasing role of technology, a new STEM learning platform can
elicit perspectives on multidisciplinary learning and open the opportunities to extend
areas not typically found in subject-specific textbooks.

1.3 Suggested Pathway to Develop Students’ STEM
Readiness

While STEM is broadly promoted and recognized in education, research does not
offer explicit suggestions on what STEM format or what organizational setting
maximizes the learning effects (see Barrett et al. 2014). Explicit elaboration on the
integrated epistemic goals in STEM education is also rarely found and literature and
mostly it refers to either recognizing and applying concepts that have different
meanings across disciplines and merging them in one coherent concept or combining
practices from two or more STEM disciplines (e.g., scientific experimentation with
developing methods of quantifications or scientific experimentation with an engi-
neering design). It is common in STEM practices that one subject takes a dominant
role in the learning objectives. As the integration of disciplines is a standard umbrella
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for exercising STEM practices, the methodology of the integration is still being
debated. In their newly developed theoretical framework for STEM education,
Kelley and Knowles (2016) suggested applying situated learning to integrate engi-
neering design, scientific inquiry, technological literacy, and mathematical thinking,
whereas Vasquez et al. (2013) proposed a continuum of integration through trans-
disciplinary approaches supported by interconnection and interdependence among
the disciplines. Because inquiry-based instruction engages students to think and act
like scientists, which is a signature pedagogy in science (Crippen and Archambault
2012) scientific inquiry-based instruction appears as a hallmark of integrated STEM
education. Pinar (2004, p. 25) claimed that multidisciplinary curriculum fosters
intellectual development and students’ capacities for critical thinking. He also
contended (p. 25) that “well-designed curriculum should enable students to connect
their experiences with academic knowledge.” Integration should not only be
discipline-wise but also move beyond these boundaries, include students’ prior
experiences, and provide them with opportunities to construct new knowledge.
Mentzer et al. (2014) suggested that teachers should seek opportunities to demon-
strate the value of mathematical modeling and encourage students to think about
relationships and functions as ways of understanding the world around us. While
research on the impact of integrated STEM experiences on students’ achievement,
subject–domain knowledge, problem-solving ability, and the ability to make con-
nections between disciplines is not extensive, concerns related to both the design of
studies and the reporting of results hamper a need to make explicit claims about what
areas of students’ learning is affected the most.

While all types of discipline or methods of integration generate learning, the most
potent are these that include scientific methods (Davison et al. 1995). Therefore, this
area will be further discussed and explored in this book. How to integrate abstract
math structures with hypotheses formulation that are typical for scientific investiga-
tion? Alternatively, how to design the process of the derived model verification that
will reflect on both scientific phenomena embedded in the investigation and the
algebraic structure? While it is apparent that through modeling processes, students
will have the opportunities to improve their mathematics and scientific reasoning
skills, the underlying question is how to integrate inductively organized learning
experiences in sciences with a traditionally structured mathematics learning. Is there
a common area for such integration? Alternatively, how to organize activities that
would enhance a pathway suggested in Fig. 1.1?

To develop a more concise theoretical framework for multidisciplinary learning,
currently used modeling in all STEM component disciplines will be analyzed (see
Chap. 4). Following this analysis, a survey of research on using scientific contexts in
mathematics classes will also be discussed, and it will be summarized in Chap. 5.
English (2016, p.1) claimed that “We still need more studies on how student’s
learning outcomes arise not only from different forms of STEM integration but
also from the particular disciplines that are being integrated.” The book can be
considered a response to this call.

6 1 STEM Education: A Platform for Multidisciplinary Learning

andrzej.sokolowski@lonestar.edu



1.4 Enhancing Scientific Route in STEM Learning Settings

Students’ successes in science and engineering significantly depend on their skills of
mathematical modeling where mathematics with its tools is the language to derive
quantitative solutions (Dym 2004). This relationship suggests that emphasizing
modeling in high school mathematics classes might benefit potential engineering
students and assure their college readiness. A broad range of disciplines and learning
methods included in STEM activities that extend from learning scientific principles
and their techniques of quantification to designing artifacts makes it challenging to
organize. This challenge perhaps accounts for the earlier discussed difficulties that
are faced by the STEM education community regarding organizing STEM activities
and evaluating the learning effects. In the light of that, it is prudent to try to develop
integrated learning experiences that will encompass a smaller range of objectives,
but that will simultaneously get students ready to immerse in more complex engi-
neering designs at college levels. A proposed pathway to accomplish that goal is
illustrated in Fig. 1.2.

The primary objectives of integrated explorations designed this way are devel-
oping students’ mathematical reasoning using scientific contexts and developing
students’ ability to learn about scientific phenomena using algebraic structures. For
the purpose of the book, merging both this reasoning will be called STEM reasoning.
The main goal of such sequencing is to provide experiences to develop students’
subject knowledge and STEM reasoning prior building artifacts. In such conducts,
performing experiments will inform the learners about the function and performance
of potential design solutions before a prototype involving such investigations is

Multidiciplinary 
mathematics and science 

modeling
•Merging mathematics and scientific reasoning

Active learning •New knowledge

Improved problem 
solving techniques

•Applications

Fig. 1.1 Proposed epistemology of multidisciplinary STEM modeling

Integrated explorations STEM readines Engineering designs

Fig. 1.2 Pathway to develop students’ STEM readiness
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constructed. Initiating STEM engagement from merging science and mathematics
was also advocated by Kennedy and Odell (2014) who postulated that STEM
education must provide opportunities to have students experience scientific inquiry
before they engage in the engineering designs to solve problems. These recommen-
dations suggest that STEM designs can be exercised in two internally cohesive
stages: the first that is to have students experience merging quantifying methods of
mathematics with scientific inquiry and the second that will take these skills to the
next level and have students apply this reasoning in engineering designs. In the next
five chapters, research findings supporting such pathway within STEM learning will
be presented and discussed.
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Chapter 2
Integrating Mathematics and Science
Within STEM Paradigm

Abstract This chapter discusses research findings on integrating mathematics and
science within STEM platform. It summarizes the premises that benefit the learners
as seen from the perspective of mathematics and science content knowledge and
highlights the areas that need more attention. In the traditional curriculum, science
provides the contexts and mathematics and offers the tools to quantify the contexts.
While students do use the tools of mathematics to solve problems in science and use
scientific contexts in mathematics, research shows that the methods applied are often
disconnected. STEM activities can be seen as offering opportunities to create a new,
unique knowledge rooted in merging these two disciplines into an integrated inquiry.
In the attempt to merge these two learning disciplines in such a way, this chapter also
provides an analysis of the primary phases of scientific investigation and its possible
fit to STEM mathematics activities. A draft of the general theoretical framework on
merging scientific inquiry with mathematical reasoning and its relation to STEM
competencies is also brought to the reader’s attention in this chapter.

2.1 Mathematical Reasoning and Scientific Inquiry

The most frequently researched STEM education pairing is that of mathematics and
science (Marginson et al. 2013). Mathematics provides a computational system and
helps conveniently encode a rule (Bing and Redish 2008). As a teaching and learning
real-world application problems is difficult in mathematics classes (Berry and
Nyman 2002), developing students’ mathematical reasoning skills by formulating
mathematical constructs using STEM contexts appears as a strong opportunity that is
not fully explored. An aspect that is not often being undertaken in mathematics
classes is coupling algebraic representations with natural phenomena to provide
opportunities for enhancing mathematical reasoning. For example, if students find
how the speed of a cart behaves over a definite, measurable distance, they can find an
algebraic function that models the cart’s position and use it to compute the position
of the cart at any time beyond the one utilized in the lab.

A high range of mathematical apparatus studied by students allows for describing
phenomenon from multiple angles. For example, it allows for: (a) quantifying the
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outputs of a deductive inquiry, e.g., to find unique solutions to problems;
(b) formulating general mathematical representations as a result of applying induc-
tive inquiry; (c) representing the data in various representations, graphs, table of
values, symbolic; (d) predicting system behavior based on the properties of a
corresponding algebraic representation. STEM environments that allow the objec-
tives to put in practice might not only extend students’ views of applications of
mathematics but also serve as catalysts to spark their interest in mathematical
modeling that is essential in engineering courses (Sacks and Barak 2009). While
the methods of teaching science can be introduced along with the development of the
skills of mathematical modeling, some of the earlier developed integrated method-
ologies suggested that concepts of mathematics can be contextualized using
constructivist theory and science discovery (Davison et al. 1995). These methods
assumed that the learner is provided with opportunities to build upon prior knowl-
edge, respond to the new learning environment, and construct knowledge based on
these experiences. DiSessa and Sherin (2000) posited that new forms of mathemat-
ical expressions supported by modern technology, for instance, by computational
media and simulations can generate new ways of helping with applying construc-
tivist theory and scientific discovery. Modern technology in forms of simulated
scientific experiments can also make the process of merging mathematics and
science reasoning accessible in mathematics classes and make it available to broader
populations of students.

2.2 Mathematics as a Tool for Quantifying Scientific
Phenomena

Poincare stated that “all laws are derived from experience, and to report them, a
special language [. . .] of mathematics is needed” Murzi (2005, p. 67). Mathematics
provides scientists with the tools to formulate the laws of nature into a concise and
symbolic language. According to Ernest (2010, p. 4). “The concepts of mathematics
are derived from direct experience of the physical world, from the generalization and
reflective abstraction of previously constructed concepts, by negotiating meanings
with others during the discourse, or by some combination of these means.” Science
provides mathematics with contexts to investigate and to model. However, physical
phenomena cannot be completely understood only by mathematical formulas and
equations, and in parallel mathematical representations standing alone do not guar-
antee that integrated learning will be nurtured.

Research shows that STEM activities can be productive if they involve students
in generating or refining mathematical representations of the systems given either in
static or dynamic forms. Honey et al. (2014) suggested that there needs to be an
explicit focus on the mathematics’ concepts and processes that arise during the
investigations. Without a focus on mathematical methods, the promotion of
problem-based STEM tasks might run the risk of sidelining mathematical reasoning
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into minor roles, e.g., routine algorithmic procedures and graphs sketching.
According to National Research Council (2013, p. 5), connecting ideas across
disciplines is challenging when students have little or no understanding of the
relevant thoughts. The challenge appears to be higher considering that students do
not always naturally use their disciplinary knowledge in integrated contexts.
Although presenting students a STEM problem without guiding them through the
stages of merging different disciplines to solve the problem might result in finding
the solution, this approach most likely will not improve the quality of their reasoning
skills. Thus, more careful planning is needed. A diagrammatic representation of a
sequence of methods that are set up to nurture the development of integrated
reasoning skills is suggested in Fig. 2.1.

Integrated mathematics—science learning experiences are initiated from observ-
ing a phenomenon. The next step in the process is identifying variables and classi-
fying them as independent and dependent. Taking data, deciding about algebraic
representation and then using the representation to reflect back on the system
behavior usually concludes the process. By formulating an algebraic representation
of the phenomenon, students are given opportunities to contextualize function’s
attributes such as monotonicity, concavity, the rate of change, domain, range,
maximum or minimum values, asymptotes, limits, and so forth. They have a chance
to develop the understanding of nature through a concise language of mathematics.
By interpreting system behaviors using this language, they will realize the impor-
tance of learning tools of mathematics and create or discover new knowledge from
the multidisciplinary STEM experience. Kelly (1989, p. 31) claimed that “to acquire
knowledge is to have students experience, observe, and form hypothesis.” It is
anticipated that such created STEM environments will help students not only with
appreciating mathematics but also with an understanding of science, where applying
the process of inquiry is the primary method of knowledge acquisition. Integrating
scientific inquiry with mathematical representations might be a bridge to solidifying

Science

•Law
•Principle

Mathematics

•Quantification
•Mathematical representations 

New 
knowledge

•Formulating new algebraic relationships
•Predicting sytem behaviour in new circumstances
•Using the idea in problem solving
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the process of creating mathematical models, solving and using the models to
exercise mathematical reasoning. Studies (Honey et al. 2014) suggested that the
integration of mathematics and science can also be supported by engaging students
in the invention and revision of mathematical representations of natural systems
because concepts make sense not as isolated facts but as elements of integrated
structures of knowledge. Guiding the learners through identifying the pieces of
information that are crucial in the process of knowledge integration and yet leaving
a room for their judgments and inputs requires a careful analysis of the project’ goals
and contents of the involved disciplines. A survey of the field of empirical research
on using scientific methods in the STEM that will shed more light into current
research is synthesized in Chap. 5.

2.3 Merging Mathematical Reasoning with Scientific
Contexts

Although educational bodies support STEM, the nature of how to integrate all the
disciplines is still being debated. Many have voiced concern that mathematics is
underrepresented in the STEM paradigm (e.g., English and King 2015). While no
one questions the dominant role of scientific methods in the STEM, Hämäläinen
et al. (2014) posited that the role of abstract mathematical concepts could increase if
those concepts are considered as a process of giving mathematical structure to
theoretical knowledge and empirical observations. This idea is supported by the
notion that mathematics can be perceived as a human conceptual construction of
embodied concepts (Lakoff and Núñez 2000). It is believed that by inducing
mathematical concepts to scientific explorations, such learning settings can also
serve as a means of promoting social construction of knowledge as defined by
Buendía and Cordero (2005). While in mathematics, the notion of a generic com-
petency often relates to problem-solving, the justification for the current position of
mathematics in the curriculum is still around procedural competency (Marginson
et al. 2013). In such settings, the role of students is reduced to plugging in values and
evaluating expressions, often with the help of a calculator. The limited use of the
tools of mathematics to support scientific practice is reflected in low students’
competencies in problem-solving. Research (Bonotto 2013) showed that even
when the problems and methods encountered in class are similar to the real-world
situations, students have difficulties in associating their analytical thinking with their
problem-solving techniques. This difficulty might illustrate a gap between how
students perceive the concepts of mathematics and the applicability of these concepts
to solve real-world problems. There can be many reasons for this gap of skills and
pinpointing some based on the gathered literature might be premature. It is hypoth-
esized that this deficiency is attributed to a limited students’ exposure to actual
experiences because students learn and retain knowledge better by being actively
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involved in the processes of linking scientific explorations with applications of
algebraic functions.

Competency in problem-solving is also one of the central concerns of physics
education. For instance, Redish (2017) and Sokolowski (2017) argued that the role
of mathematics in constructing quantitative descriptions of scientific phenomena in
science school practice is not highlighted enough. Several findings from physics
research community describe students’ problem-solving strategies as manipulation
of formulas by rote. Such use of the tools of mathematics has little to do with
applying mathematical reasoning because the reasoning does not make students
connect the attributes of algebraic functions with what they observe. It is seen that
STEM has a great potential for providing students with opportunities to improve
these skills and for rebalancing the minimized role of mathematics in science. STEM
can also be used to show students that mathematics should no longer be seen as a
discipline studied and applied for mathematics’ sake only, but because it helps make
sense out of some part of the world that they study in other academic courses.
Through the integration process, science and mathematics exchange points of view
outside of the paradigm of the scientific or logical-analytical mathematical methods.
Before scientific facts can be integrated, they need to be organized into general
concepts according to their specific attributes. Thus, learning science enables the
skills of classification and categorization of data that translates to applying specific
algebraic tools to express the data symbolically. Learning mathematics, on the other
hand, should entail using scientific contexts to exercise mathematical reasoning in
new more sophisticated dimensions. Integrating scientific inquiry with mathematical
reasoning can serve as a bridge to enhancing the process of eliciting mathematical
models and to advancing the use of mathematics in other courses.

2.4 Scientific Methods and Inquiry in STEM Learning
Settings

Science is the investigation of natural phenomena using scientific methods
(Windschitl et al. 2008). Scientific methods include several interconnected phases
that are: the careful observation of natural phenomena, the hypothesis formulation,
the conducting of one or more congruent experiments to test the hypothesis, and the
drawing of a conclusion that confirms, modifies, or refutes the hypothesis. General
phases of the scientific process along with the direction of their progression are
illustrated in Fig. 2.2.

The cycle is initiated by defying natural phenomena of interest. The investigator
immerses then in its stages following the details of the lab-specific procedures. In
completing the cycle, the investigator converts the natural phenomena to a different,
more sophisticated representation, often expressed in a concise language of mathe-
matics. To have the learners succeed in these processes, not only the skills of
applying scientific methods are required, but also adequate mathematical skills and
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students’ ability to convert the lab prompts into semiotics that can be used to express
the lab process in a different representation. In this regard, scientific reasoning is
related to cognitive abilities such as critical thinking. Scientific reasoning can be
developed through training and can have a long-term impact on student academic
achievement. The STEM community considers that these skills are as crucial for
students to learn as the STEM content knowledge (Honey et al. 2014).

Scientific methods should be distinguished from the aim of products of science,
such as knowledge, prediction, or control. Methods can be perceived as how the goal
of the undertaking is achieved. Methods can include specific laboratory techniques,
such as taking specific measurements using more sophisticated devices such as
probes, or photogates and mathematical apparatus including the use of technology
(e.g., the techniques of computing the coefficient of determination or standard
deviation) or other specialized software or programs.

An inquiry approach to instruction requires teachers to encourage and model the
skills of scientific inquiry, as well as the curiosity, openness to new ideas, and
skepticism that characterizes science (National Research Council 2013). Scientific
inquiry trains students to ask questions, hypothesize, carry out investigations, and
formulate inferences. It guides students to think and act like real scientists. “To engage
in authentic and productive inquiry, students must come to understand inquiry not as
the accumulation of objective facts but as an enterprise that advances through the
coordination of evidence with evolving theories constructed by human knowers”
(Kuhn and Pease 2008, p. 513).

There are three main types of reasoning used to formulate new knowledge:
inductive, deductive, and abductive. In science, mathematics, and engineering,
inductive and deductive reasoning are mainly used (Prince and Felder 2006). The
inductive reasoning could occur in three progressively different avenues: structured
inquiry, guided inquiry, and open inquiry (Staver and Bay 1987). Most common
inductive inquiry in school practice is a structured inquirywhere students are given a
problem or equipment and some auxiliary information that guides them through the
solution process.

While a deductive inquiry is a process of reasoning from specific observations to
reaching a general conclusion (see Fig. 2.3), an inductive inquiry denotes the process
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of reasoning from a set of general premises to achieving a logically valid conclusion
(see Fig. 2.4).

In sum, deductive thinking draws out conclusions, whereas inductive thinking
adds information (Klauer 1989). Abductive reasoning, also called abduction, is an
inference representing the best possible explanation (Thagard and Shelley 1997). It
is a type of inference often expressed in a freely defined form that can be found in
everyday events and scientific reasoning. Since the exact form, as well as the
normative status of abduction, is still a matter of controversy, this type of reasoning
is not considered to support the reasoning behind the proposed STEM activities.

The mathematics education community has taken the position that observation,
experiment, discovery, and conjecture are as much a part of the practice of teaching
and learning mathematics as of any natural science (National Research Council
[NRC] 2013). STEM activities that offer explorations and learning contexts during
which students apply theorems to create new knowledge through experimentation
present an excellent platform for following this recommendation. It is believed that
using scientific methods in mathematical activities will help students perceive
mathematical concepts as tools to learn the laws of nature and to construct, test,
and validate engineering designs. A far-reaching goal of this enterprise is to produce
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deductive reasoning

Unique solution
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Problem

Fig. 2.3 Process of an
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competent STEM modelers that will be ready to take the risk to develop new
technological devices. A pictorial summary of this thesis is illustrated in Fig. 2.5.

The theme of the book is to support the notion that STEM activities have the
potential to serve as a means of fostering students’ mathematical reasoning and
consequently improving their scientific modeling skills. The next chapter provides
more detailed background about why real contexts of STEM activities help with
knowledge accumulation and retention.
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Chapter 3
Teaching and Learning Representations
in STEM

Abstract Context in the STEM is a critical factor in learning. Context can be
delivered in various ways depending on the form of the final product. Research
shows that representations are very effective in conveying knowledge because they
help learners visualize abstract ideas and diversify the forms of information. This
chapter discusses the effects of representations on learning and attempts to answer a
question why representations support knowledge acquisition and retention. Repre-
sentations can function in two primary capacities: as provided by the instructor or
produced by the learners. Being able to gain understanding using representations and
constructing representations is one of the most critical factors in supporting knowl-
edge retention. What are the features of well-designed representations and how they
affect knowledge processing are other questions that this chapter also attempts to
answer.

3.1 Representations as a Means of Supporting Learning

When applied to STEM, representations can function in various capacities and be
derived in a number of ways. Representations can be dynamic and interactive; they
can serve as resources for reasoning, predicting, hypothesizing, visualizing, testing,
and confirming students’ prior experiences. According to National Research Council
(2007), representations can also encompass clarification of problems, deduction of
consequences, and development of appropriate tools. In learning mathematics and
science, developed models also called the products of representations, have a high
impact on students’ further engagement and success in these subjects. Exploring
these capacities during STEM activities can benefit not only STEM disposition but
also their success in other subjects outside of the STEM domain.

STEM learning environments in which the students observe real experiments
formulate their graphical and symbolic representations or build artifacts provide
excellent learning opportunities for developing knowledge based on a concise
language of representations. In this pipeline, representations encompass physically
embodied, observable configurations—such as pictures, concrete materials, tables,
equations, diagrams, along with various forms of schemata and drawings of one-,
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two-, or three-dimensional figures (Kaput 1989). Representations can also include
algebraic functions that learners formulate as a product of investigating dynamic or
static systems. All of these embodiments are also called external representations, and
they can constitute learners’ tasks or be provided in the form of drawings, artifacts,
or interactive simulations. Representations promote conceptual innovation of
depicting natural phenomena by embedding them in inscriptions that reduce some
aspects of the target and amplify others in a way that allows the learners to focus on
the meaningful aspects (Lehrer 2009). Representations can serve as a means to
achieve a final product or a way of setting forth a situation or formulating a problem
so that efficient and acceptable solution to a problem can be found (Dym and Brown
2012). In sum, the purpose of using representations is to synthesize aspects of a
system while simultaneously highlighting its essential elements. A significant insight
from research on cognition and learning is that the organization of knowledge, thus
the ability to make connections between concepts and representations is a key to the
development of expertise in a domain (Ainsworth 2006).

While in engineering the term representation means to draw the plan for and to
create, execute, or construct an artifact according to the plan, in this book, the term
will take a broader meaning. By working on activities that will require integration of
knowledge, students will practice the skills of constructing representations. The
representations will integrate mathematical concepts with scientific phenomena.
Students will also practice retrieving integrated information from provided repre-
sentations or transferring the representation into new knowledge. Research shows
(Cook 2006) that representations help with understanding because the learner can
easily identify meaningful pieces of information and link the information with
his/her own prior experiences. By being described this way, the knowledge retention
is more efficient, and it provides a mechanism for a faster recalling. However, the
key to develop expertise in the scientific and algebraic inquiry is the ability to make
connections between concepts and representations. Thus, representations in school
practice should be perceived as a bridge between abstract theoretical knowledge and
learners’ prior experiences. By converting experiment’s cause and effect into a
graphical representation, students visualize the realm that enables them to concep-
tualize the mutual dependence of the cause and effect. Consequently, acquiring such
ability should help students to convert the experiment’s causes and effects into a
specific algebraic representation.

The matrix (see Fig. 3.1) summarizes some advantages of using representations to
support learning.

STEM learning environments in which students are engaged in observing real
experiments, formulating graphical or symbolic representations or building artifacts
provide excellent learning opportunities for developing the skills of retrieving
essential pieces of knowledge from representations. Representations in school prac-
tice can be perceived as bridges between abstract theoretical knowledge and the
world outside of the classroom.
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3.2 Representations in Mathematics and Science

Identifying representations as a means of learning corresponds with a modern view
of mathematical and science education, which calls for making connections between
abstract, graphical, symbolic, and verbal descriptions of relationships and their
artifacts (Gilbert 2005). Prain and Waldrip (2006) pointed out that an empirical-
mathematical modeling approach to teaching science is beneficial for students when
it is accompanied by explicit and integrated attention to the nature of science and
students’ learning strategies.

While learning or constructing mathematical or science knowledge involves not
only manipulating on symbols but also identifying relationships and interpreting the
relationships, graphical representations, especially their dynamic embodiments have
a high potential to help students with learning these processes. As Eisenberg and
Dreyfus (1991, February) noted, students might end up with an incorrect solution if
their algebraic skills are not strong even though their reasoning might be correct. If
the learner possesses the skills of graphically expressing the problem or support its
solution process, the representation might serve as a backup or a means of verifying
the algebraic solution. By being versed in constructing and applying representations,
the learners “acquire a set of tools that significantly expand their capacity to model
and interpret physical, social, and mathematical phenomena” (NCTM 2000, p. 4).
Modern technology provides multiple advantages of exploring these features. Pro-
ducing representations also plays a vital role in deriving new theories; in fact, the
majority of scientists made their discoveries by carefully selecting and analyzing
representations or by inventing new once (Cheng 1999). Possessing the ability to
convert observed phenomena into graphical formats such as diagrams, graphs, or
algebraic functions can help underpin its underlying principle. This skill conse-
quently should help students understand the phenomena properties and provide
a basis for using this understanding in further inquiries or problem-solving.

• Allow complex 
knowledge to be 
delivered faster

•Reduce the need for a 
high capacity working 
memory

•Allow for using
multimedia 

•Explicate necessery
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Faster 
knowledge 
processing

Engaging 
environment
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solving
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information 
processing 

Fig. 3.1 The effects of representations on learning
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Despite extensive research, it is still debated how to make the transition from
abstraction to representation in the way that would be most accessible to students.
The proposed pairing of scientific and algebraic concepts (see Chaps. 7–10) can be
seen as one of the ways. The other question that arose from the literature analysis is if
representations used in science are coherent with representations used in mathemat-
ics or if representations used in mathematics support accurately scientific concepts?
Alternatively, what is the extent to which there should be a mutual coherence of
representations so that the learner can use the knowledge of more than one subject to
explore concept using the representation? For example, a preliminary survey of
college-level physics resources showed that graphs of functions used in physics not
always satisfy the conditions for being functions from a mathematics point of view
(Sokolowski 2017). Can STEM activities serve as a bridge of unifying these
representations and provide a coherent view? While developing students’ skills of
converting between representations has proven to be beneficial for students’ learn-
ing, STEM environments can serve as an excellent basis for enhancing this learning
competency.

3.3 Active Learning and Representations

The strength of the knowledge delivered by representations is supported by the
constructivist learning theory (see Dewey 1997). According to that theory, knowledge
is not passively accumulated, but instead, it is the result of active cognizing by the
individual. STEM by promoting active learning when students are provided with
tangible experiences reflects on that theory. The learning effects of the constructivist
theory have also an impact on mathematics education. Hoeffler and Leutner (2007)
contended that learning is more actively accumulated when representations are utilized
to convey the meaning of mathematical ideas. Active learning has consistently been
shown to be superior for promoting long-term retention of information, comprehen-
sion, problem-solving skills, and interest in the subject (Felder et al. 2000).

STEM projects provide multiple opportunities to generate active learning. Active
learning will be promoted in the practice section of the book by generating environ-
ments where students will have a chance to set up, observe, and interact with
experiments’ outputs and reflect on their experiences.

3.4 Dual Channel of Knowledge Processing

Clark and Mayer (2016) claimed that knowledge accumulation is supported by the
following principles of learning: (a) dual channel of information processing—people
have separate channels for processing visual/pictorial material and auditory/verbal
material; (b) awareness of limitedmemory capacity—people can actively handle only
a few pieces of information in each channel at one time; and (c) active processing of
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information—learning occurs when people engage in appropriate cognitive
processing such as attending to relevant material and organizing the material into
coherent structures. The principles of learning reflect on how knowledge is stored and
retrieved from learners’ memory. By carefully balanced activities, during which the
learner is prompted to justify, for example, the sound frequency and simultaneously
observe the wave, the information about the pitch of the sound is diverted into two
learning channels, visual and auditory, that allow for faster and more efficient
processing. While visual information includes pictures, diagrams, charts, plots,
animations, and so forth, and auditory information includes spoken words and
other sounds. The medium of information that needs more elaboration is written
prose. Cognitive scientists have established that human brains convert written words
into their spoken equivalents and process them in the same way spoken words are
processed (Felder andHenriques 1995). Thus, written and read words are classified as
verbal representations processed by an auditory channel (Fig. 3.2).

Several researchers proved that student learning improves when single sources of
information are visually integrated so they can be processed together in a single
image (Moreno and Mayer 1999). Embedding meaningful, integrated, and
conveyable to students’ representations during STEM activities in the tasks of
creating representations or retrieving information might benefit students’ general
academic disposition.

3.5 Human Memory and Its Capacity

The mechanism of converting information into graphical representations plays a
vital role in how the information is stored in memory. Hollingworth and Henderson
(2002) showed that memory created by graphical representations is retained longer
than the memory of spoken words. Paas et al. (2003) stated that two structures affect
the rate of information processing: working memory and long-term memory. Human
working memory has a limited capacity, whereas long-term memory has an unlim-
ited capacity (Kintsch 1998). For the information to be stored in a learner’s long-
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Fig. 3.2 Duality of information processing (inspired by Clark and Mayer (2016))
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term memory, it needs to be processed initially through its working stage. Thus, if
students are given a dose of complex information, they might feel overwhelmed,
which can result in the information not being fully processed at the first stage, thus
not understood and learned. In such case, the information will be blocked from being
accumulated in the learners’ long-term memory. The primary goal of using repre-
sentations is to convert, and thus reduce the information to a concise visual form and
to transmit it to the students’ visual channel. STEM learning environments where
students engage in projects that have them merge observable experiments with
graphical and symbolic representations provide great opportunities for helping
attend and process the knowledge through a visual channel. Research (Kintsch
1998) shows that knowledge treated by a visual channel has a higher probability
of being stored in the long-term memory.

Effective teaching is about formulating and delivering new knowledge in a way
that is encoded in students’ long-term memories. Cognitive research (Ainsworth
2006) informs that information that is not related to learner’s existing knowledge is
likely not to be retained. Moreover, to recall and use the knowledge again cues are
required. Linking the new material to prior structures provides a natural set of cues
(Felder et al. 2000). While converting knowledge to a different representation, its
cognitive value cannot be reduced, but only converted to different and more acces-
sible forms. This process, per human cognitive architecture (Shepard 1967), reduces
the need for high capacity working memory and allows the information to be
accumulated in the learner’s long-term memory. The virtue of using dynamic or
static representations that depict realm lies in being able to express or convert
knowledge in convenient graphical embodiments supported by verbal elaborations
rather than vice versa. Such knowledge presentation creates appealing conditions for
being accumulated: longer retained and accessible for further retrieval, e.g., during
assessments. Disciplines like engineering, mathematics, and science that are
predominated by real applications are particularly susceptible to be supported by
representations.

3.6 The Effects of Internal Representations on Knowledge
Acquisition

Mediated by the level of entry into learners’ memory system, Kaput (1989) catego-
rized representations as external, discussed (in Sects. 3.1 and 3.4) and internal that
constitute the accumulated knowledge. Both types of representations are interrelated
in the sense that the meaning of internal representations stored in a learner’s long-
term memory strongly depends on the student’s perception of the external counter-
part. In the process of accumulating new learning experiences, external representa-
tions are converted into internal images that encompass mental images
corresponding to internal formulations of what human beings perceive through
their senses. Internal representations cannot be directly observed. They are defined
as the learning experiences stored in learner’s long-term memory (Hochreiter and
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Schmidhuber 1997). Internal representations are formulated based on one’s interac-
tion with the environment and are altered throughout a life span. In the process of
learning, internal representations are prompted by external representations. Being
able to formulate concepts’ internal representations plays an essential role in com-
municating knowledge. Hiebert and Carpenter (1992) maintained that there exists a
strong relationship between external and internal representations created by learners
and that the extent of linking these representations determines understanding. It has
been proven that the most effective transitioning of knowledge from short-term
memory to learner’s long-term memory is through experiencing external visual
representations. Perkins and Unger (1994) stated that “mental maps or mental
models or other sorts of mental representations mediate with what we would call
understanding performances” (p. 4). Viewed through these prisms, the internal
representations assert knowledge as a body dependent on a learner’s own experi-
ences. The process of accumulating these experiences is illustrated in Fig. 3.3.

Enabling the processes of creating representations by supplying engaging, yet
intellectually stimulating environments deems to be one of the most fundamental
factors in nurturing successful learning. Being situated in realistic settings, STEM
provides opportunities for exercising not only formulating representations but also
for verifying their effectiveness and the adherence to reality. “Design of integrated
experiences must balance the richness of integration and real-world contexts against
the constraints of the cognitive demands of processing information that is separated
in time, in space, or across disciplines and types of representation” (Honey et al.
2014, p. 98). It is vital that the prompts created by learning experiences during
STEM activities be diverted into visual and auditory channels. By allowing students
to discuss their experiences and inferences while observing the behaviors of their
projects or experiments learning will be well nurtured. Such learning setting will
reduce the need for a high capacity working memory resulting in knowledge being
easier accessed by the learner. I will discuss learning settings of individual STEM
disciplines in Chap. 4. Their standard features will be extracted, and an attempt to
integrate them in a coherent STEM inquiry will be made.
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Chapter 4
Modeling in STEM

Abstract Knowledge in sciences is traditionally derived inductively, whereas in
mathematics and engineering it is derived deductively. One of the purposes of
STEM projects is to blend science with mathematics and engineering into a coherent
learning experience. While this book is an attempt to develop and put in practice a
theoretical framework for exercising multidisciplinary STEM learning experiences,
a need to discuss a strategy that would link all learning methods of the component
STEM subjects emerged. Research shows that modeling is the most common
approach exercised in all of these disciplines. However, the phases of modeling in
mathematics might not parallel with the phases of modeling in science. To design a
learning environment that would support multidisciplinary learning, a need for a
modeling cycle that would integrate the features of all types of STEM modeling
appeared as a necessary step before the multidisciplinary projects could be designed.
The purpose of this chapter is to synthesize the characteristic features of currently
applied modeling cycles in each of the STEM disciplines and select these features
that can support STEM learning objectives exemplified in this book.

4.1 Modeling and Construction of New Knowledge

Although educational bodies support STEM, a high diversity of modeling and
learning methodologies can be one of the reasons why integrating the contexts of
STEM disciplines and evaluating learning effects is still debatable. While active
learning and constructivist theory serve as guidance for efficient learning, modeling
provides a framework for the activities design. However, in the attempt to merge all
modeling approaches in one modeling process, a reference to current literature on
modeling was needed.

The idea of modeling is inherent in the scientific methods, and it is a central
feature of engineering (Felder and Brent 2003). Modeling is also a framework for
organizing a learning environment. Some studies (e.g., Malone 2008) find that
modeling instructions promote expert problem-solving behavior in students. By
being applied to various disciplines, sciences, mathematics, and engineering, model-
ing is defined in some ways. Odenbaugh (2005) defined it as a collection of cognitive
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strategies that can be used to pursue aims of scientific inquiry. In this view, the
product of modeling takes a form of new knowledge, yet grounded in the scientific
methods. Wilkinson (2011) defined modeling as an attempt to describe, in a precise
way, an understanding of elements of a system of interest, their states, and their
interactions with other items. Modeling is also perceived as a process of approxi-
mation of reality. Cobelli and Carson (2001) described modeling as a process that is
initiated by isolating a system and applying methods that would enable to learn its
structure. Such defined system represents a part of reality under investigation. By
applying suitable, for a specific phenomenon, modeling strategy, a model is formu-
lated. The model is to reflect on the system parameters that were of interest to the
researcher.

Models, the products of modeling, can be generated by the use of analogy. The
analogy can be made with the target of modeling or by a partial comparison with a
source (Clement 2008). In this view, it is helpful for the modelers to develop a
network of sources, for example, mathematical representations, for comparing target
of modeling with the sources. It is necessary that the learners acquire a clear
understanding of various algebraic structures along with their specific characteristics
prior engaging in modeling activities. The algebraic structures, as mentioned earlier,
will serve as source models for target STEM modeling. Models, similar to repre-
sentations, can take different forms: conceptual, mental, verbal, physical, statistical,
logical, graphical, and so forth. According to National Research Council (2012),
modeling is more commonly understood as an integral component of authentic
scientific inquiry. Therefore, model-based curricula have been gaining more atten-
tion in current education reform.

The following subsections summarize the critical stages of the modeling cycles
used in STEM this in biology, chemistry, physics, mathematics, and engineering.
Research shows that in the STEM education the area of merging science methods
with mathematical reasoning is underrepresented. Thus, more attention will be given
on how modeling in mathematics can support other STEM disciples modeling
cycles. A synthesis of all key modeling stages will serve as a departing point to
developing a general framework that is presented in Chap. 5.

4.2 Research and Modeling in Biology

Research in biology education endured a significant change recently due to the
integration of computational technologies and methods from physical sciences,
mathematics, computational sciences, and engineering (National Research Council
2012). The effects of using methods of quantification in biology constitute a
substantial part of biology education (Steen 2005). This change implies for instance
that biology students should be able to demonstrate quantitative numeracy and
familiarity with the language and tools of mathematics, make inferences about
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natural phenomena using mathematical models, and make a distinction between
cause and effect in problem-solving (Mayes and Myers 2014). The diagram
(Fig. 4.1) illustrates a standard modeling cycle in biology developed by MoKitano
(2002). The process is initiated by a selection of a problem, and it is followed by
formulating a hypothesis and creating a model representing the phenomenon. The
so-called Dry experiment often supported by a digitally simulated environment
supplies means for analysis and verification of quantified nature of the formulated
model. If the anticipated model fails to represent the simulated environment ade-
quately, it is rejected and resigned. Models that pass the tests become subject to a
further more detailed analysis, and eventually, they are deployed to formulate a set of
predictions used to formulate aWet experiment. These models that prove to produce
outputs consistent with real (Wet) experiments are ready to be applied in real-life
situations. Advancing in computational science makes the modeling cycle a prom-
ising tool in research and biology education.

The biology education research community faces specific challenges that impede
the advancement of modeling biological processes. Some of these challenges are
(a) a lack of correlation between biology and mathematics curricula that prevents
using more advanced mathematical apparatus in biology classes and (b) a deficiency
of appropriate examples involving biology contexts in mathematics classes (Gilbert
and Boulter 2012a, b). It is seen that STEM platform can serve as a means to help
reduce these challenges.

Dry experiment (simulation)

Experiment design and 
development

Predictions

Data –and hypothesis driven 
modeling

Wet experiment

Experiment and data 
analysis

Biological knowledge and 
contradictory issues

System analysis and theory 
formulation

Fig. 4.1 Modeling framework in biology inspired by MoKitano (2002)
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4.3 Modeling in Chemistry

Chemistry is “the scientific study of the properties of the composition, the structure
of matter, the changes and accompanying energy” (McGraw-Hill Dictionary 2003,
p. 376). Chemical ideas have been visual, mathematically or verbally modeled, and
recently computational models and modeling have a firm establishment in chemical
research and education (Erduran 2001). Models in chemistry are framed by bringing
history and philosophy of chemistry together. However, the formulation and testing
of these models takes place in a chemistry laboratory (Justi and Gilbert 2002).
Unlike in physics where the tendency of modeling is mathematization, chemistry
modeling relies on classification schemes which focus on explaining the qualitative
aspects of matter (Moyer et al. 2007).

All modeling activities in chemistry are undertaken with a purpose, whether it is
to describe the behavior of a phenomenon, to outline the reasons for the causes and
effects of that behavior, or to predict how it will behave under other circumstances
(Gilbert 2002). An example of modeling process in chemistry is illustrated in
Fig. 4.2.

Express in mode(s) of 
representation

Consider scope and 
limitation of model

Produce mental model

Conduct thought
experiments 

Design and perform
empirical test 

Fulfil purpose

Decide on purpose

Select source for 
model

Have experience

Modify mental 
model

Fail Pass

Fail Pass

Reject mental
model 

Fig. 4.2 Modeling framework in chemistry inspired by Gilbert (2002)
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This modeling process is initiated by a purposeful decision that intertwines with
the observation of the phenomenon recognizing its qualitative or/and quantitative
properties. The next steps are the formulation of a mental model and expressing it
using qualitative or quantitative representations: material, visual, verbal, mathemat-
ical (Buckley and Boulter 2000). After the model is formulated, it undergoes an
exploration process by applying thought experimentation conducted in the investi-
gator mind. It is a common practice that scientists often mentally rehearse the design
and holding of empirical experimentation (Reiner and Gilbert 2000). If the model
fails to produce predictions that are confirmed in the thought-experimental testing
phase, an attempt is made to modify it and to re-enter the cycle.

Chemistry modeling cycle contains parallel phases found in the biology modeling
which are the purpose of the investigation, data collection along with analysis, and
the stage of model confirmation. As compared to biology, chemistry modeling cycle
places a higher emphasis on using representations to model experiment’s findings.

According to Gilbert (2004), it is still debatable what context should constitute
chemistry, be taught, and how it should be taught.

4.4 Modeling in Physics Education

Physics is “the study of those aspects of nature which can be understood regarding
elementary particles and laws” (McGraw-Hill Dictionary 2003, p. 1591). More
specifically, physics is defined as a branch of science that studies the matter and its
motion through space and time, along with related concepts such as (a) energy in the
forms of light, electricity, radiation, gravity and (b) forces in the forms of gravita-
tional, electrostatic, and electromagnetic. Physics deals with matter on scales ranging
from sub-atomic particles (e.g., particles that make up the atom) to stars and entire
galaxies. As an experimental science, physics utilizes the scientific methods to
formulate and test hypotheses that are based on observation of the natural world.
Observable patterns in physics are foundations to formulate mathematical models
(Hestenes 1995). The purpose of investigations in physics is similar to these in
biology and chemistry that is to make scientific laws. Physicists and especially
theoretical physicists make extensive use of mathematics to communicate their
findings. Theoretical physicists, as opposed to experimental physicists, construct
theories expressed as mathematical models based on a deductive inquiry, starting for
example, with assumptions about the motion of stars. They subsequently analyze the
mathematical consequences of their assumptions to fit the model to the motion of
electrons in atoms. Theoretical physicists use mathematics as a reasoning backup,
and their success depends on how well the results agree with observations of nature.
In case of dissonance, the mathematical representations, not the facts observed, are
reexamined. A model in physics education is perceived as a surrogate object or a
conceptual representation of a real purpose. Hestenes (1995) proposed a general
modeling cycle in physics that is illustrated in Fig. 4.3.
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Real situation or experiment appears to be critical elements of modeling in
physics. This cycle highlights an embedded system phenomenon that is reflected
by formulated model. The stages of purpose and validity are paralleled in this
modeling process, and both support the model formulation. Justification of derived
model and conclusions complete the modeling process. Due to its mathematical
forms, modeling in physics, unlike in biology or chemistry does not contain dry or
mental models. According to Brewe (2008), a mathematical model has four compo-
nents: (1) a set of names for the object and agents that interact with it; (2) a set of
descriptive variables representing properties of the object; (3) algebraic equations of
the model describing its structure and time; (4) an interpretation relating the descrip-
tive variables to properties of some object which the model is to describe. Physical
models being of mathematical forms contain all of these components.

Despite extensive use of mathematics in physics research, a supportive use of
mathematics in physics education is still fragmentary and consensus on how the
increase of the role of mathematics in physics is not reached (Uhden et al. 2012).
Physics students fail to see more profound physical relationships in formulas and
often use mathematics only within its pure algorithmic sense (Domert et al. 2012).
This finding is often interpreted by physics education community as students’ lack of
problem-solving skills that result in a shallow understanding of the underlying
mathematical and physics concepts.

4.5 Modeling in Mathematics Education

Modeling was introduced into mathematics education to bridge the gap between
reasoning in mathematics and reasoning about a situation in the real world. Due to a
diverse range of applications, the literature does not provide a homogeneous

System 
Phenomenon

Model

Situation

Purpose Validity

Analysis

Conclusion/
Justification

Fig. 4.3 Modeling in
physics inspired by
Hestenes (1995)
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definition of what mathematical modeling is. Traditionally, modeling is perceived as
a tool supporting problem-solving or a strategy in engineering that provides oppor-
tunities for transitioning between problems and developing artifacts. Lesh and Harel
(2003) defined it as finding patterns, quantifying and generalizing the patterns. Such
view of modeling in mathematics also corresponds with Blum et al. (2007) percep-
tion who describe it as “learning mathematics to develop competency in applying
mathematics and building mathematical models for areas and purposes that are extra-
mathematical” (p. 5). More broadly, modeling is described by Blum and Ferri (2009)
who situate it as a tool to (a) help students to better understand the world; (b) support
mathematics learning, motivation, concept formation, and comprehension;
(c) contribute to developing various mathematical competencies and appropriate
attitudes; and (d) contribute to an adequate picture of mathematics.

From the epistemology points of view, Kaiser-Messmer (1996) identified three
main perspectives of mathematical modeling: (1) pragmatic that focuses the learners
on solving practical problems, (2) scientific–humanistic which focuses the learner on
creating relations between mathematics and reality, and (3) integrative that blends
pragmatic and scientific perspectives. Historically, the pragmatic view was advo-
cated by Pollak (1978), and the scientific–humanistic by Freudenthal (1973). One of
the first schematic diagrams of mathematical modeling was developed by Blum
(1996), see Fig. 4.4.

The modeling cycle consists of two parallel chambers called reality and mathe-
matics, which comprise further of building blocks defined as a real situation, real-
world model, mathematical model, and results. By weighting reality and mathemat-
ics equally, the cycle offers a structure that is often deployed in school mathematics’
problem-solving. The initial stage of the process is labeled as a real situation. By
moving through the modeling cycle, the modelers are to return to the actual situation
which is a solution to the given problem. The cycle is often perceived as a guide to
problem-solving, and it seeks a unique solution to given real situation. It is assumed

Real situation Mathematical results

Real world model Mathematical model

Reality Mathematics

Fig. 4.4 Mathematical modeling cycle (inspired by Blum (1996))
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that the reality or nature of the problem is well understood by the problem-solver
before an attempt to generate a model is made. The problem-solver is to define what
the essential elements of the reality are and how to apply mathematics to solve the
problem. Applied mathematical algorithms are to yield numerical values, which are
further interpreted as problem solutions.

More recently, the common core standards writing team (CCSWT 2013) took a
more pragmatic approach to develop a modeling cycle (see Fig. 4.5).

The modeling process is initiated by providing students with a problem who
identify relations between variables and formulate a model. The next phase is to use
the model to compute and the quantity of interest to validate it and interpret the
results. Once the result is validated, it is reported as a concluding phase of the
modeling cycle. Working through the stages, the students develop and use their
critical, observational, and translational skills. There are more mathematical model-
ing cycles found in the literature (see Sokolowski 2015). All modeling schemes
share specific standard features; they begin from a real situation/problem and
conclude with a deductively attained unique solution.

While the idea of introducing mathematical modeling to school practice enhanced
problem-solving, research indicates some stages that need improvement in order to
have students benefit more from the modeling processes. Cobb et al. (2010)
contended that despite efforts the process of problem-solving is disconnected from
mathematical modeling. Klymchuk et al. (2008) and Lesh and Zawojewski (2007)
claimed that exercising problem-solving in the current math curriculum does not
generate the skills that it intends; students use superficial keyword methods rather
than analyze embedded mathematical structures in the attempt to solve the problems.
Redish (2005) argued that mathematicians and physicists have different goals in
using mathematics in a sense that physicists are looking for meaning and interpre-
tation of the equations, whereas mathematicians would most often be interested in
solving the equations. This lack of connection might partially explain students’
difficulties in developing mathematical reasoning skills. Thus, a need to search for
such opportunities emerged, and it seems that STEM environment can serve as a
field to merge these views.

Problem Formulate Validate Report

Compute Interpret

Fig. 4.5 Mathematical modeling cycle inspired by CCSRT (2013)
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4.6 Modeling in Engineering

Engineering is defined as “the science by which the properties of matter and the
sources of power in nature are made useful to humans in structures, machines, and
products” (McGraw-Hill Dictionary 2003, p. 723). Understanding the principles of
how mathematics supports science discovery seems to be an essence of modeling in
engineering. By observing how the world works, and by using technical vocabulary
along with various kinds of mathematical models, engineers are interested in creat-
ing artifacts that have not yet been invented. Prior designing the devices, engineers
need to be able to use scientific reasoning and model mathematically the processes.
Designed and built devices will support these processes. The scientific method and
engineering design have much in common, and the ability to apply knowledge of
mathematics and science to design and conduct experiments and analyze and
interpret data appear on the top of the requirements for students to succeed in
engineering classes (Felder and Brent 2003). Are there differences between model-
ing in science and modeling in engineering? Yes, while science models are often
applied to predict what will happen in a future situation, in engineering design the
predictions are used to assure that the design will serve its purpose safely and
efficiently. For example, to serve its purpose a bridge must stand or the airplane
must fly.

Modeling cycles in engineering can take diverse paths depending on the structure
of the final product. The diagram (see Fig. 4.6) illustrates a general route of modeling
in engineering proposed by Cobelli and Carson (2001).

One of the most critical stages of the process is the second stage where the
modeler needs to identify the governing physical principle of the system. The

Model predictions

Model, variables, parameters

Object/system

Valid and accepted 
predictions

Test

Fig. 4.6 Modeling in
engineering inspired by
Cobelli and Carson (2001)

4.6 Modeling in Engineering 37

andrzej.sokolowski@lonestar.edu



product of this phase, the principle will be further applied to quantify the model
outcomes. Once the model is formulated and verified, it moves to a phase of
improving it. This phase can include additional variables or assumptions/restrictions
that can be lifted or retained. A new modified model will undergo an interactive loop
called model–validate–verify–improve–predict until it reaches a form that satisfies
its purpose in the most optimal ways (Cobelli and Carson 2001). Hence, unlike in
scientific modeling, engineers are looking not only for modeling the processes but
also for designing the devices considering the most optimal outcomes. The motiva-
tion and general approaches to scientific modeling and modeling in engineering are
not the same though, yet they share common features with science being the
backbone of engineering. While the models in engineering can take various forms,
for example, patterns of structure, circuits, chemical processes, and mechanical
parts, the most prevailing ones are mathematical models (Felder and Brent 2003).

4.7 Technology in STEM Modeling

Technology is defined as a “systematic knowledge and its application to industrial
processes closely related to engineering and science” (McGraw-Hill Dictionary
2003, p. 2109). Technology in mathematics is referred as the use of computer
software to expedite computations and allow for diverse representations of mathe-
matical objects. From the time of development of the mainframe computer in 1942,
mathematicians and mathematics educators have been intrigued by the vast compu-
tational possibilities offered by technology. Technology can also mean the knowl-
edge of techniques applied to accomplish a particular goal. Herschbach (2009)
suggested that there are two common perspectives of technology: an engineering
and humanity. The engineering perspective suggests that technology is equivalent to
making and using of material objects (artifacts) and the humanities view of technol-
ogy focuses instead on the human purpose of technology as a response to a specific
human endeavor (Feenberg 2006). Among the earliest applications of the new
technology to mathematical learning in schools was computer-assisted instruction
(CAI)—the design of individualized student-paced modules that were to promote a
more active form of student learning (Kelly 2003). The microcomputer and the
graphing calculator developed in the late 1970s also supported the growth of
functional approaches in algebra and interest in multiple representations of mathe-
matical objects (Heid and Blume 2008). Graphing calculators commonly used in
mathematics and science classes allow for performing a broad diversity of mathe-
matical algorithms ranging from finding accumulation and rate of change to formu-
lating symbolical forms of derivatives and antiderivatives. While technology is often
taken to be a reference to digital technologies, its meaning according to Feenberg
(2006) is instead associated with the epistemology of inducing engineering modeling
in practice or means of achieving the goal of engineering modeling. While modeling
is the primary method of learning sciences and designing in engineering, the cycles
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and the aims of research illustrate that the paths taken to employ technology are not
identical, yet in all, technology is a tool to support the investigations.

In the proposed STEMmodeling projects in this book, engineering perspective of
technology will be explored and will be used as a means to enhance quantification of
data and support the verification of mathematical representations and structures that
the learners will develop.

4.8 Synthesis of Modeling Techniques

While biology uses extensively simulated environments before embracing the pro-
cess with real experiments, chemistry emphasizes thought experiments as a prelude
to actual experimentation. Theoretical physics, on the other hand, highlight the use
of the tools of mathematics to prove or disprove their hypotheses. Engineering
modeling extends the pathway; it not only includes the stages of scientific modeling
but it moves the process to a next level of designing artifacts that would reflect on the
rules of the phenomena. Mathematics in these modeling processes takes a position of
a guardian that guarantees that all phases of the modeling processes are quantified
correctly.

In the three fundamental disciplines, science, mathematics, and engineering,
technology is to support quantification processes and thus enhance mathematical
reasoning. Technology supplies the tools to perform the quantifications more effi-
ciently or to produce alternative visualizing means of the experiment outputs or the
anticipated artifacts. All the modeling processes share standard features that are
illustrated in Fig. 4.7.

The survey of the modeling techniques revealed that one of the most critical
elements of engineering design is the designers’ ability to apply mathematical
reasoning and scientific inquiry to model the phenomenon and then to design an
artifact. Mathematical modeling is of particular importance because its quantification
methods produce viable means for enacting and predicting how newly designed
artifacts will behave in new circumstances. Technology supports the quantification
process, however, selecting a mathematical structure of the best fit depends on to
designers judgment and thus his/her mathematical skills. STEM provides excellent
opportunities for developing these skills in mathematics school practice.
Intertwining the primary purpose of developing mathematical reasoning with scien-
tific inquiry and respecting the fact that disciplines mark distinctive methods of
knowing appears as a highlight of the design process. While a deductively organized
problem-solving in mathematics stands at odds with inductive science, it seems
exploratory character of STEM projects provides opportunities to link these episte-
mologies into one cognitive task.

Research shows that students’ perception of mathematical modeling in college is
greatly affected by their prior educational experiences with modeling. Staats and
Robertson (2014) claimed that students’ difficulties with modeling in mathematics
are due to being new to such activities when they enter science and engineering
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college programs. If problem-solving is followed by developing mathematical
reasoning and the techniques of modeling, the prospect of producing successful
modelers is much more promising. Making STEM modeling a priority in a high
school curriculum seems to be one of the actions supporting this premise.
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Chapter 5
Survey of the Field of Empirical Research
on Scientific Methods in STEM

Abstract Research shows that being versed in scientific modeling is a precursor to
succeed in engineering modeling and might be a factor attracting students to
engineering. This finding suggests that STEM activities that develop the skills of
modeling should not only focus on students’ mathematical and scientific reasoning
skills but also provide an environment where students would feel comfortable and
encouraged to continue these enterprises in their college and professional careers.
One of the main obstacles in adopting inquiry-based learning projects in mathemat-
ics is the gap between problem-solving in mathematics and inquiry in science. It
appeared worthy to search the literature on STEM education to determine what the
research findings in this domain are. The synthesis of the survey findings will
support multidisciplinary STEM framework developed in Chap. 6.

5.1 Formulating Criteria for Literature Review

There were several limitations in determining the review search criteria. One of them
was a broad scope of the objectives and terminology used to describe STEM
research. To overcome this limitation, guidance that assured transparency of the
terms and selection of scientific methodologies was established. Although I realized
that due to that generalization, the synthesis might not be entirely comprehensive, I
expected that its nature would locate enough studies that would reflect on the search
aim. The primary goal of the survey was to extract findings of what phases of
scientific methods are included in STEM activities and how they affect students’
learning. More specifically, this survey centered on gathering STEM activities that
included the inquiry type, hypothesis formulation, data gathering, model develop-
ment, and the validation process.

With this aim established, the following search questions were formulated:
(1) Are the elements of scientific methods such as hypothesis stating, the type of
inquiry, the stage of model eliciting and its validation existing in STEM activities?
(2) How do students merge the mathematical and scientific reasoning and what are
the main challenges and research recommendations to eliminate these challenges?
The survey encompassed studies conducted at high school and college levels.
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The source of data collection was a systematic review of literature written in English
language and published in peer-reviewed education journals between January
1, 2000, and March 30, 2017. The survey considered each study as individually
informative (Hsieh and Shannon 2005) and was led by coding and identifying
patterns.

The following emerged as critical terms: (a) Scientific inquiry—a method or
procedure that consists of experiment, hypothesis, and systematic observation
along with formulation, testing, and modification of the model; (b) STEM educa-
tion—activities and projects that integrate science, technology, engineering, and
mathematics; and (c) Mathematical modeling—process of developing a mathemat-
ical model. One of the other vital terms was explorations defined as an act of
searching to discover information. Learning via multifaceted explorations plays
a vital role in developing students’ skills in science and mathematics classes
(e.g., Pollak 1978). Explorations are also the essence of modeling in engineering
(see Sect. 4.6). The primary research was conducted using ERIC (Ebsco), Educa-
tional Full Text (Wilson), ProQuest, and Science Direct. The following queries were
used: (a) “STEM activities” OR “scientific inquiry” AND “college” AND “mathe-
matics”; (b) “Mathematical modeling” AND “high school” AND “scientific
methods”; (c) “Multidisciplinary projects” AND “scientific inquiry.” While this
search led to 213 studies, given the previous argument, I have considered, that
even using these terms collectively might not capture all literature relating to this
synthesis. Many of these studies pertained to a general purpose of STEM education,
curriculum and testing constraints, and professional development for teachers. The
scrutiny that aimed at extracting only exploratory activities revealed that 32 studies
that represented 18 countries satisfied the study criteria. Considering a large time
interval, this rather small range of studies, showed that investigating the effects of the
elements of scientific methods on students’ mathematical reasoning is not widely
practiced.

5.2 Synthesis of General Findings

A systematic review can take different paths; it can be qualitative, quantitative, or it
can take a form of being a combination of these two aims. Because the primary goal
of this undertaking was to learn how the elements of scientific inquiry have been
used in STEM activities, this review focused on synthesizing qualitative research.
A post hoc analysis has shown that in many of these studies (N ¼ 63%, 20) students
initiated STEM activities from designing artifacts, e.g., bridges, rockets, without a
limited prior exploration of the underlying scientific principles prior (see, e.g., Kertil
and Gurel 2016). The goal of such projects, thus building artifacts, reduced the
algebraic apparatus to simple algorithms, and the contribution of science concepts
was respectively reduced to applying students’ naïve thinking. In the remaining part
of the pool (38%, N ¼ 12), only certain phases of scientific methods were applied.
It is hypothesized that focusing students’ attention on constructing artifacts that
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require using algebraic algorithms might be one of the reasons for which students do
not perceive mathematics as a subject helping them to reason, but as a subject
providing them only the supportive tools for quantifying. More specific conclusions
on how the processes of STEM activities are organized, as seen through the prism of
scientific methods were clustered in four subchapters that follow.

5.2.1 Findings of How Students Formulate Hypothesis

Although research shows that stating hypotheses benefit the learning, students were
expected to formulate hypotheses only in four (N ¼ 4, 13%) of the studies (e.g.,
Faraco and Gabriele 2007). Authors of these studies pointed out weak students’
skills in formulating and proving or disproving the hypotheses. In (N ¼ 2, 6%)
studies, participants were supposed to formulate hypotheses quantitatively and test
mathematical concepts (Lim et al. 2009). The scientific nature of these activities was
not explicitly brought up to students’ attention.

Hypothesis reflects closely on problem statement or the purpose of the investi-
gation. Once formulated, a hypothesis focuses the investigator’s attention on a
narrower area of inquiry and helps the investigator extract information necessary
to prove or disprove it. The hypothesis can be perceived as the researcher’s proposed
theory explaining why something happens based on his/her prior knowledge (Felder
and Brent 2003). A well-established precept in education is that a strong motivation
to learn is generated by a strong desire to know (Albanese and Mitchell 1993). Thus,
formulating hypothesis can also be perceived as a motivational factor to drive
students’ motivation to complete a given task. Hypotheses play central roles in the
process of modeling, and students’ difficulties in its formulation may also reflect on
their weak STEM reasoning skills. The hypothesis in STEM modeling activities are
suggested to be of verbal forms and should enable testing mathematical and scien-
tific concepts. This duality will require establishing a balance between mathematics
and science contexts during the lab conducts. It is doubtful that reducing problem
statements and consequently the hypothesis to formulating only mathematical rep-
resentations will nurture the connections between a symbolical mathematical lan-
guage and scientific contexts and help students develop STEM reasoning. Constant
mediations between scientific contexts and algebraic representations will lead to
establishing an equilibrium to construct new knowledge and support the develop-
ment of students’ STEM reasoning.

A need for more elaboration is also needed to differentiate between hypothesis
and prediction. As hypothesis proposes an explanation for some puzzling observa-
tion, a prediction is defined as an expected, often as a numerical outcome of a test of
some elements of the hypothesis (Lawson et al. 2008). Prediction also refers to
model’s ability to foresee, with a certain degree of accuracy, what will happen in the
future conduct (Bechtel and Abrahamsen 2005).

It is critical that in STEM activities, the hypothesis targets not only embedded
mathematical structures but also scientific principles rooted in the activity.
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For example, if an activity is about optimizing the profit of producing and selling
goods, the mathematical structures used to model this context will most likely
be polynomial functions along with determining their intersecting points, while
the scientific principle will be represented by the law of supply and demand. If the
activity is to model projectile motion, then mathematical structures would
include polynomial parametric equations of the first and the second degree, and the
scientific principle would be represented by the properties of object’s motion in the
gravitational field. Furthermore, if students are to derive Newton’s second law of
motion during STEMmathematics activities, then the hypotheses will attempt to find
out what type of algebraic function can be used to describe mathematical dependence
between an objects’ acceleration and the net force acting on them. In physics classes,
hypothesis targeting this idea is typically reduced to investigating how an object’s
acceleration depends on the net force acting on it, and a general statement of
proportionality is sought. It is proposed that hypotheses in STEM projects are
inclusive to disciplines involved in the given STEM project.

I propose using multidisciplinary STEM activities as opportunities for the students
to revise and deepen their mathematical and scientific reasoning skills through
reflecting on carefully formulated questions embedded in the instructional support.
Highlighting the role of hypothesis, its structure and formulation in STEM projects are
one of the areas that the proposed theoretical framework will address in more details.

5.2.2 Inquiry Types Used During STEM Projects

There are three types of inquiry: inductive, deductive, and abdicative. While the
inductive reasoning is typically used in sciences, deductive is used in mathematics
and engineering (see Chap. 4). An analysis of the located studies revealed that
inquiry types applied during the activities were not discussed and brought up during
the activities’ designs. The literature also did not provide a coherent view of what
inquiry type—inductive or deductive—is suggested for STEM activities. In several
of the studies (Soon et al. 2011), students applied algebraic equations to find specific
solutions or worked on problem-solving using, e.g., interactive media (Liang et al.
2010; English and Gainsburg 2015) which implies a deductive approach. This
method also prevailed in undergraduate STEM programs (Williams et al. 2015).

Observation, analysis, and model formulation appeared to be crucial elements of
scientific methods with the model to be regarded as an ultimate product of these
phases. These phases though are not explicitly highlighted in STEM activities.
Because the general method of reasoning affects activity design and goals, a need
for discussing it emerged. Mathematics is traditionally considered a deductive
discipline as opposed to science that requires reason inductively. Inductive reasoning
has been proven to play a significant role in concept learning and the development of
mathematical expertise (Haverty et al. 2000). The motivational and learning benefits
of teaching inductively are reported throughout the literature about cognitive and
educational psychology as one of the most efficient pedagogy (Felder et al. 2000),
and this reasoning will guide the proposed activities.
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5.2.3 Concerns About Extracting Variables and Model
Formulation

One of the major concerns voiced in the accumulated research was students’ inability
to transfer given problem or process of an experiment into mathematical represen-
tation (Soon et al. 2011). This phase is essential in modeling, and a deeper analysis of
this deficiency is necessary to suggest improvements. While searching for more
prompts, more detailed questions about the origin of the difficulties emerged such as
is this deficiency due to a weak student understanding of mathematical structures
(e.g., the properties of periodic functions, the differences between rate of change and
a percent rate change) or is the deficiency due to difficulties in identifying conceptual
patterns in given problem/experiment and mapping the patterns on corresponding
mathematical structures? If students cannot identify algebraic structures that would
reflect a system’s behavior, then the reason for the deficiency might be a lack of
mathematical knowledge or skills in applying the knowledge in real situations. If the
difficulty lies in recognizing the properties of system behavior, then this difficulty
can be attributed to a lack of scientific inquiry skills or lack of the content knowledge
embedded in the activity. Several research studies suggested that to succeed in
STEM modeling activities students need to possess necessary background about
the concepts/laws that they are to integrate. This suggestion requires that instructor
needs to assure that students had learned contents of the disciplines prior having
them integrate the knowledge. Expecting that the students will learn and simulta-
neously integrate the knowledge might be misleading. Such arrangement might lead
to seeing students confused and discouraged. Jonassen (2011) concluded that going
into a problem or experiment with a vague goal of figuring it out is unlikely to lead to
a meaningful solution. The skill of developing scientific inquiry is not naturally
possessed by individuals, but it can be developed through carefully designed
instruction. Developing STEM reasoning using modeling is challenging for stu-
dents, and instructional support is necessary. Even if students had learned the
contexts prior a modeling activity, the interface of integrating of the two worlds—
real situations and their corresponding mathematical representations—requires spe-
cific prompts that can be formulated by the instructor. Some of such prompts
proposed in this book are (a) establishing duality of the hypothesis, (b) intertwine
mathematics and science ideas throughout the lab, and (c) designing the verification
process of the elicited model that would validate not only algebraic structures but
also the science outcomes of the experiment.

Students’ difficulties in deciding about cause and effect, formulating variables,
and classifying the variables to develop a mathematical representation are being
discussed in research (e.g., Diefes-Dux et al. 2012), however, seems to be done in
this regard. While the categorization of variables as dependent and independent is
signified when labeling the values in the Cartesian plane or in using the function
notation, deciding which quantity is dependent and independent causes doubts when
realistic contexts are presented, and the variables are not explicitly picturized. These
doubts can be reduced, and the skills of classifying variables improved, if a
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discussion of the purpose of the lab and its general scientific underpinnings are
discussed with the students prior the lab conduct. Is there parallelism of cause
commonly understood in mathematics as the independent variable and effect as the
dependent always respected in sciences? Many scientific discoveries prove that this
association is not always reinforced; in fact, there are several laws in physics, for
example, Ohm’s or Hooke’s laws where the cause and effect do not correspond with
the meanings of independent and dependent variables as defined in math classes.
These modifications in science are done purposely. Explicitly informing students
about these modifications would broaden the perspective and encourage flexibility.

Another area worthy of discussing is a classification of quantities as given and
required, often used in science, and the relation of this classification to mathematics
problem-solving in STEM contexts. When STEM project is about finding a unique
solution to a given problem, classifying variables using that manner might be
helpful; however, in exploratory STEM projects, it might not be sufficient. In fact,
the research showed that classifying quantities as given and required constitutes a
preliminary step to succeed in STEM multidisciplinary modeling projects (Lim et al.
2009). This finding suggests that dynamic STEM systems require more sophisticated
instructional guidance in identifying and classifying variables. Based on the research
findings, students do not transfer their scientific inquiry skills to mathematics classes
automatically. Working on STEM activities in mathematics classes is methodolog-
ically different from the once students encounter in their science classes. Thus, the
commonly used scientific classification of quantities as given quantities and required
quantities needs to take another more sophisticated meaning in STEM projects—it
can be perceived as identifying essential function parameters (e.g., slope, coordi-
nates of the vertex, function period, initial value, rate of change, and so forth).
Identifying these attributes in the given experiment will help in using a correct
function, and consequently a correct mathematical representation. Taking data to
construct algebraic functions to model system behavior does not constitute the final
stage of collecting evidence displayed by the system; the modeler needs to extract
specific attributes of the system behavior and map the attributes into known alge-
braic structures. In the STEM studies that focused students’ attention on building
artifacts, this step was omitted. It is seen that to help students reason like scientists,
extracting these differences from the epistemology of mathematics and science
points of view and giving students a chance to discuss these meanings when applied
in STEM environments will be helpful. Students must be given opportunities to
realize the relevance of function features not only in static—content-free—problems
typically found in mathematics textbooks but also in dynamic scientific contexts.
Mentzer et al. (2014) claimed that “Teachers should seek opportunities to demon-
strate the value of mathematical modeling and encourage students to think about
relationships and functions as ways of understanding the natural phenomena”
(p. 313). Thus, to have students gain meaningful learning experiences from
multidisciplinary STEM activities guidance explicating on how to use learned
abstract concepts in real contexts is necessary.
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5.2.4 Concerns About the Validation Process

Validation phase whose purpose is to determine how well the derived algebraic
representation resembles the system behavior was undertaken in eight of the studies
(N¼ 8, 25%). The low frequency perhaps reflects on the deductive inquiries that had
been applied in most of the gathered research studies that typically seek unique
solutions. Several lobbyists (Klymchuk et al. 2008) noted that students failed to
validate formulated mathematical structures or had difficulties with the derived
model’s contextual interpretation. Crouch and Haines (2004) claimed that the
transitioning from formulated model back to the real-world problem is the most
challenging phase of the modeling process. These findings suggest that more
prompts should be generated in the instructional support to guide modelers about
the validation of the elicited algebraic forms. The mathematical representation
should be perceived as an explanation that refers to the ability of the model to
account, in sufficient detail, for the underlying causal mechanisms that produce some
observed outcome or phenomenon (Bechtel and Abrahamsen 2005). The purpose of
the formulated models is not only to verify adherence of their forms to the conven-
tional structures but also to assure that their forms can be used to learn more about
given phenomena in new situations, for example, while solving textbook problems
of working on the STEM projects. To better align mathematical and scientific
methods, the interpretations should mediate throughout the processes and should
produce valid conclusions. Marginson et al. (2013) and Honey et al. (2014) con-
cluded that mathematics and science concepts and representations must be explicitly
flagged and engaged with, and linked across activities so that cohesive ideas and
relations through the design process are not left to chance. It is believed that
designing multidisciplinary STEM projects in such structure will help develop an
epistemology that will parallel not only with inductively organized inquiries in
sciences but also support and develop mathematical reasoning.

5.2.5 Interface of Problem-Solving and Modeling in STEM

Developing problem-solving expertise in students has become a central concern of
science and mathematics education researchers and practitioners (Diefes-Dux et al.
2012). Problem-solving can be embedded in any STEM projects, and in fact, STEM
projects often are about solving a problem. However, due to multiple voices from the
research STEM community about students’ difficulties in problem-solving, other
routes of addressing this issue are sought. How can STEM modeling activities
proposed in this book contribute to these efforts? While the relation between explor-
atory STEM activities and problem-solving has been discussed by mathematics
community, the effect of the order of sequencing these two enterprises on students’
learning has not been explicitly examined. In fact, the two areas, problem-solving and
explorations, appear disjointed in the current research and practice.
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Although multidisciplinary STEM projects are to provide general inquiry tech-
niques not only in mathematics, the fundamental question to answer is if STEM
modeling in mathematics should follow problem-solving or if problem-solving
should follow modeling? Alternatively, should both be considered separate prac-
tices, or should one follow the other? Some researchers (e.g., Mousoulides et al.
2008) defined problem-solving as repetition of procedures, and modeling activities
as context-rich problems that do not assume that students have already learned the
procedure for solving the problem. While some educators consider modeling as a
distinct activity from problem-solving, others have proposed otherwise and the view
depends on the purpose that a specific word problem or a modeling activity serves in
the given learning context.

Modeling in this book is perceived as an exploratory type of activities giving
students opportunities to merge scientific inquiry skills with mathematical reasoning,
thus providing the novice modelers with a background and directions on how to
approach problems using scientific methods. Modeling is to equip students with
systematic methods to solve the problem and use these methods or some of their
phases to solve other similar tasks. With this purpose assumed, exploring properties
of phenomena will not constitute problem-solving per se but rather it will constitute a
prelude to a subsequent problem-solving rooted in similar contexts. This pathway
corresponds to how science and engineering modeling processes are related (see
Chap. 4), and it is also supported by research. A study by Lingefjärd and Holmquist
(2005) revealed that after working on modeling activities that are usually supplied by
real embodiments, students handled word problems better than those who were
taught by conventional methods. Yu (2011) concluded that “developing the model-
ing ability promotes students’ problem-solving ability” (p. 152). Dean and Kuhn
(2007) highlighted the importance of prolonged opportunities for implementing the
control-of-variables strategy during the solution of extended problems because such
opportunities convert the meanings of formulas into algebraic functions that can be
used to uncover multiple solutions. Research in engineering education explicitly
stated that students need to acquire modeling skills prior engaging in engineering
designs because interpretation and understanding of the context of a problem are
critical for constructing meaningful and adequate mathematical representations of
covarying quantities (Moore and Carlson 2012). Modeling coupled with explora-
tions is to develop contextual background and STEM reasoning skills to transfer to a
narrower area of problem-solving that seeks to solve specific cases.

While there is robust research supporting the thesis that carefully designed
modeling environments can serve to foster and solidify students’ problem-solving
skills, research on how to make the transition from STEM exploratory modeling
projects to problem-solving that benefit the learning is limited. In the proposed
multidisciplinary STEM modeling cycle (see Fig. 6.1), the phase of model verifica-
tion during which the learner uses the derived mathematical model to answer
additional questions is to link modeling to the typical word problems found in
textbooks. Viewed through this prism, problem-solving perceived in this book is
an extension of modeling activities and it will constitute its integrated part that is
nested in the verification phase of the scientific inquiry. The epistemology of such
sequencing is illustrated in Fig. 5.1.
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Niss (2010) contended that knowing mathematical theories does not guarantee
that this knowledge is transferred automatically to abilities to solve real-life prob-
lems. This finding suggests that students need a transitioning phase from mathemat-
ical theories to context-rich problem-solving and it seems that STEM modeling can
fill in this gap.

While modeling has proved to be helpful with problem-solving, the question that
needs more research to be answered is what phases of the modeling process are
particularly beneficial for developing students’ problem-solving skills. Problem-
solving in science can be enhanced by inducing an engineering design approach
because it creates an opportunity to apply science knowledge and inquiry as well as
provides an authentic context for learning mathematical reasoning. Problem-solving
in mathematics, using STEM environments, exemplifies the algebraic structures
making them not only as algorithms but also as means to justify the scientific
reasonableness of the derived models. While this might be a premature statement,
it seems that the degree to which modeling activities can support problem-solving
skills is rooted in their capacities to extend students’ analytic skills and abilities to
apply these skills and mediate them with new contexts.
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Chapter 6
Formulating Conceptual Framework
for Multidisciplinary STEM Modeling

Abstract This chapter builds on the accumulated research findings of previous
chapters and proposes a theoretical framework to design multidisciplinary STEM
activities whose main learning goal is to develop students’ mathematical and
scientific reasoning skills. Research showed that mathematics in the STEM is
underrepresented; therefore, enhancing mathematical reasoning was given a priority.
Also, the theoretical framework aims to have students mathematize phenomena and
use the structures to support problem-solving techniques. This chapter explains the
structure of the framework (Fig. 6.1) along with how the links between mathematical
and scientific concepts will mediate. While the framework is proposed for mathe-
matics classes, it can also be used to design activities in other STEM disciplines. The
framework was used to develop activities that are described in Chaps. 7, 8, 9, and 10.

6.1 Framework for Multidisciplinary STEM Learning

The modeling scheme (Fig. 6.1) emerged from the synthesis of the STEM research.
It reflects on recommendations that called for mathematics and science ideas to be
explicitly highlighted, engaged with, and linked in STEM activities to assure a
broader and more cohesive blend between these two disciplines. The suggested
cycle is an enriched version of one that was previously developed to stimulate
mathematical modeling (Sokolowski 2015). While the earlier framework focused
on supporting mathematical modeling, the proposed herein is more comprehensive.
It opens a gateway for further explorations to exercise problem-solving and to
develop independent projects or design artifacts. Mathematics in this process is to
(a) provide a means to generate concise symbolic representations and support
understanding of mathematical ideas; (b) serve as a source of tool to quantify
scientific concepts, and (c) help extend the analysis of the phenomena beyond the
classroom constraints. Science, on the other hand, is to provide quantifiable contexts.
I acknowledge that organizing any STEM activities using the proposed framework
might not be possible because of some areas of mathematics and science knowledge
carry out a high theoretical load that might not provide sufficient measurable data to
be embraced in the modeling processes.
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From an epistemological point of view, the cycle represents a pathway of learning
that focuses on contextualizing the tools of mathematics through science embodi-
ments. It was anticipated that the learning pathway would encourage the students to
create new knowledge about the systems under investigation and have them realize
that to provide a scientific answer, a single piece of information is not sufficient, and
that experiment needs to be designed and data collected and analyzed. It was also
hoped that students would realize that each experiment has certain limitations and
that most knowledge is not absolute. Perkins (2004) claimed that understanding is a
matter of being able to do a variety of thought-demanding things with a topic, like
predicting, finding evidence, generalizing, applying, and representing the subject of
understanding in a new way. The pedagogical prompts of the proposed enterprise
intend to encompass these tasks, and foremost, they are to convince the modelers
that inquiry embraced in STEM modeling is one of the ways of knowing and
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Gathering/ Technology
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Model Formulation

Model VerificationMathematical 
Representation

Scientific Principle
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Fig. 6.1 STEM modeling process supporting scientific and mathematical reasoning
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understanding. As the modelers become more acquainted, the design might be
simplified leaving more room for students’ creativity and invention.

The modeling process consists of phases of scientific methods and auxiliary tasks
that explicitly target multidisciplinary nature of STEM contexts. The subchapters
that follow explain how the central phases of the process were assembled and how
they intertwine to engage students in the integrated math-science inquiry process.

6.1.1 Inquiry Type and Students’ Reasoning Skills
Development

National Research Council (NRC 2000) characterizes a complete inquiry cycle as
comprising an identification of questions, the design of an investigation, examina-
tion of empirical data, and drawing and justifying inferences. These skills develop
gradually in the context of rich practice. They require time and careful planning.
STEM activities are to merge contexts of component disciplines in one enterprise.
There are three main types of inquiries that STEM enterprises can be organized and
the participants can develop: inductive, deductive, and abductive. While each
possesses own right to be applied, the selection depends on the problem formed,
the general framework of the analysis, and more importantly the type of inquiry
skills the students are to practice. Following the modeling cycles discussed in
Chap. 4, it was noticed that research and learning in sciences are dominated by an
inductive inquiry, whereas mathematical modeling and engineering is predomi-
nantly supported by a deductive inquiry. The purpose of the suggested STEM
activities is to immerse the students in the processes of generalizing natural phe-
nomena using available mathematical systems. Students will observe the phenom-
ena, gather data, and use the data to formulate algebraic representations. These tasks
represent typical phases of inductive inquiry. Therefore, inductive inquiry emerged
as a leading type of STEM reasoning suggested in this book. Inductive reasoning
also plays a significant role in problem-solving, concept learning, and the develop-
ment of mathematics expertise (Haverty et al. 2000). Inductive reasoning can be
encouraged in a wide range of instructional methods such as inquiry learning,
problem-based learning, project-based learning, case-based teaching, discovery
learning, and just-in-time teaching (Prince and Felder 2006). STEM activities that
can be embraced in discovery-type instructional methods (English and Sriraman
2010) further supported inductive reasoning. While the inductive inquiry is
suggested in this book, the deductive inquiry can also be applied especially during
these STEM projects that focus students’ attention on a narrower part of analysis
seeking a unique solution to a problem or build an artifact. Hestenes (2013)
suggested that students must be engaged in scientific inquiry so that they learn
how to shape and justify rational opinions on their own. STEM activities are
presenting excellent opportunities for developing such justifications.
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6.1.2 Criteria for Contexts Selection

It is recommended that the STEM contexts designated to intertwine mathematics and
science be exploratory and must provide means for verifying derived model within
an algebraic domain of the phenomenon. Because students do not spontaneously
make connections between various disciplines, prompts for connecting their
multidisciplinary elements are to be made explicit. For example, if students construct
quadratic functions to model a path of a projected object, then they should be made
aware that this is possible because objects undergo a constant acceleration that is
�9.8 m/s2 while moving in the gravitational field. Additionally, if they are to verify
enacted algebraic representation of the path of motion, they should be able to do so
referring to the time of the observable motion.

The complexity of the contexts depends on several factors such as (a) the grade
level taught, (b) activity purpose and learning objectives, (c) class time allocated for
its completion, and (d) availability of equipment/multimedia. All these factors need
to be considered so that participation and readiness of all students is enhanced. The
most commonly used STEM contexts are these provided by real experiments where
students can manipulate on the cause and effect and simultaneously observe the
outcomes and gather quantitative data. Such environments expose students to some
parts of reality that can be remembered and further deployed to word problems of
similar situations. Unfortunately, mathematics classrooms are not typically designed
for conducting real experiments. Therefore, a necessity to find an alternative means
of conducting experiments in mathematics classroom emerged, and it seems that
using simulated experiments can be a suitable replacement. Research (Podolefsky
et al. 2010) shows that simulated exploratory type experiments can suffice well real
experiments and allow for multidisciplinary inquiries. Education multimedia tech-
nologies that create interactive learning environments also support the development
of content-specific knowledge and skills. Software, in the forms of simulations,
graphing, and computational programs are set up to use various representations to
visualize knowledge that is typically not observable. Learners should encounter
diverse ways of explaining in discipline because the diversity of knowledge repre-
sentations will help them understand and retain that knowledge (see Sect. 3.1–3.3).

Out of four proposed activities in this book, two will be supported by simulated
experiments. I would like to encourage the use of scientific simulations as a means
for context and data source because of their convenience to bring to the classroom
and because such environments are aligned with contemporary STEM modeling
cycles (see Chap. 4). The medium organization, and especially its design due to
explicit purpose, plays a significant role in detecting the cause and effect, thus
identifying and classifying the variables. Due to being conducted in mathematics
classes, the scientific contexts of the experiments along with data taking must be
simple and thus limited to exploring one concept so that the students can focus on the
most important features without a need to refer to an extensive science background.
A word of caution is needed here; one must realize that the medium or the context
itself will not generate learning because concepts, principles, and ideas do not reside
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in physical materials or classroom activities but in what students do and experience
(Noble et al. 2001). Thus, a careful problem formulation, coupled with a low, yet
contextually rich cognitive load, is a prerequisite for developing an engaging and
productive STEM learning environment.

6.1.3 Challenges with Problem Statement and Hypothesis
Formulation

The catalyst for initiation of STEM activities in this book is the Purpose or Problem
Statement followed by Hypothesis formulation. In many of the research studies (see
Chap. 5), problem formulation was assigned as students’ task. While there are
different views on who the instructor or the modeler should formulate the problem
statement, I suggest that the purpose and the problem statement are formulated by
the instructor, and the task framing hypothesis is assigned as a students’ task.
Supplying students with a problem statement will help them with identifying the
independent and dependent variables and formulate the hypothesis, thus setting the
students on the right path of the lab completion. I also suggest that prior the activity
conduct, the instructor explains the purpose/problem of the activity and demon-
strates the general physical process of the phenomena (simulation) if possible.
Research shows (Dean and Kuhn 2007) that helping students to identify a question
has significant effects for the following phases of the inquiry because tasks encap-
sulate the goals and means by which students encounter the issues framed as relevant
in the discipline. Thus, if the learner falsely identifies the problem embedded in the
given context, he/she might not be able to extract the cause and effect accurately and
will likely misinterpret the hypothesis that might jeopardize the entire inquiry
process. There is a room for students to revise the inquiry and the analysis; however,
limited by time constraints, the goal of the labs is to prepare the learning pathways in
a manner that will equip all students with stimuli to learn from it.

What forms can a problem statement take? Problem statements are formulated
through establishing precise control of the context. Due to being exploratory,
problem statements should be open ended, and they refer to students’ prior knowl-
edge and learning experiences. For example, what type of function will model the
maximum height of a bouncing tennis ball? Alternatively, what type of system of
equations will model the motion of two cars that move on the same time domain? In
the suggested activities, students will be given multiple problem statements targeting
not only math concepts but also scientific contexts, and respectively, they will
formulate multiple hypotheses.

The hypothesis is formulated based on an understanding of the problem state-
ment, and it is to reflect on the activity purpose and design. To merge mathematical
and scientific reasoning, the hypotheses are set to target not only mathematical
structures but also scientific principles. For example, if the context of the activity
pertains to modeling a periodic function, then the sought algebraic model is most
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likely a periodic trigonometric function, while the scientific principle can represent
the properties of energy transportation using wave or a population of species that
change periodically. The two contexts will merge during STEM activity process.
The degree to which a derived model correctly depicts the phenomenon will be
verified by their mathematical and scientific context coherence. Since hypothesis
formulation depends on students’ prior knowledge, it is imperative that the instructor
check if students own adequate prior knowledge. Research shows that an engaged
learner is inspired to accomplish the desired goals even in the face of difficulty
(Schlechty 2001). The learner will be engaged if he/she possesses a necessary
discipline-specific backgrounds that are to be merged. Since hypothesis is the best-
educated guess formulated by prior experience, I suggest making explicit to students
that their hypotheses might be incorrect. The lab purpose and subsequent conduct are
to prove or disprove the hypothesis, thus have the learner confirm and correct the
prior knowledge. Presenting the meaning of hypotheses in such manner has an
essential effect on supporting students’ self-confidence and motivation to engage
in more such labs. The students also need to realize that STEM activities are to help
them gain understanding and develop reasoning skills to handle problem-solving in
broadly defined contexts. Designed for an average ability student, the activities are
also to encourage students to apply their creativity so that they will consider
becoming designers of similar projects in their professional lives. Learning environ-
ments that provide opportunities authoring disciplinary knowledge are apt to
increase the likelihood that students will develop interests and dispositions consis-
tent with disciplinary engagement (Cobb et al. 2003).

6.1.4 Analysis, Generalization, and Algebraic Model Eliciting

The importance of what it means to know is highlighted by the distinction between
learning about the products of discipline—what is often called content knowledge—
and learning how disciplinary products are formulated, modified, and sometimes
ultimately abandoned if the derived model cannot be validated using data within the
experiment domain. Tasks such as Analysis, Generalization, and Model Formulation
are essential because they present opportunities to disclose to students how
multidisciplinary products are generated and validated. While the modeling cycles
reviewed in Chap. 4 did not explicate on how scientific andmathematical natures of the
produced representations intertwine, the proposed STEM framework suggests that both
types of representations engage throughout the entire lab conduct. This intertwining is
ensured by including questions that not only prompt the modelers to quantify the
phenomena but also questions that prompt the modelers to verify the adherence of
the context under investigation to these quantifications. These questions are supposed
to evoke mathematical reasoning and simultaneously blend it with scientific inquiry.
The phases of analysis will contain such designed questions. As during the generali-
zation and eliciting an algebraic representation the learner will focus more on
mathematizing the phenomenon, the phase ofModel Verificationwill direct the learner
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toward verifying independently scientific and mathematical natures and then claim
their adherence to correctly or incorrectly depicting a STEM phenomenon under
investigation. The mathematical structure will help quantify the values of the variables,
and embedded scientific principle will justify the reasonableness of the answer. Both
structures should produce a coherent model. If one does not support the other, revision
of themodel should be enacted. This phase will also highlight the role of the hypothesis
and its mathematical-scientific duality. Once both natures of the model are validated,
the learner will further test its applicability, for example, in solving congruent textbook
problems. Explicitly emphasizing the duality of the audit process will also provide
learners with opportunities to revise their knowledge if necessary. Structure-wise, the
duality of verification parallels with the duality of the hypothesis stating and it warrants
reusability of the derived model. To increase the relevance of the lab experience, the
learner will apply the derived model in problem-solving that correspond with the
formulated algebraic structure. Sought variables will have their magnitudes within
the range of the lab constraints so that the learner can reflect on the conducted real
lab while verifying the correctness. Once these two distinct verification processes
are finalized, the formulated model will be ready to be confirmed and deployed to
other, similar contexts, outside of the activity (e.g., physics, biology, chemistry, or
economics), or applied further in engineering designs.

During the STEM modeling activities, a system under investigation as well as its
variables must allow being defined using mathematical rules. To increase under-
standing the meaning of mathematics concepts, students should be encouraged to
view a given phenomenon through patterns and rules of mathematics. Suitable
standards and their corresponding mathematical embodiments are identified through
observing the system behavior, identifying related variables, formulating patterns,
and constructing a symbolic representation of the trends. Using derived models in
other contexts will constitute the final phase of the activity called Problem-Solving or
Engineering Designs. This phase can be considered a further verification of the
derived pattern, and it can be conducted through similar problem-solving related to
the examined STEM context. This phase has another purpose; it is to serve the
learner as a source of prompts stored in their long-term memories (see Sect. 3.4).
This phase is also to increase the students’ awareness of the scientific nature of the
derived representations and prioritize the interpretation of the formulated algebraic
function over the applied procedures. The STEM modeling cycle also proposes a
revision process. The stage of revision depends on the model and the degree of its fit
to phenomena parameters. Thus, it can begin from revising Testing and Analysis or
from any stage that the modeler identifies as falsely stated.

6.2 Teacher’s Guidance During Multidisciplinary STEM
Activities

Although modeling activities are classified as student centered, teachers play a vital
role not only in designing but also during the lab conducts. Diefes-Dux et al. (2012)
suggested that instructors are partners of innovation during modeling processes.
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They should suggest specific approaches, called corrective guidance, and help
students revise specific modeling processes if the processes do not lead to the desired
model formulation. To provide more valuable support, the instructor must be
familiar with the concepts of mathematics and science involved in the activity.
The instructor might circulate between the students’ desks and check the progress
by listing to students’ discussions and offer suggestions if needed. Students always
appreciate any suggestions although they might not always be ready to request them.
It is recommended that the instructor conduct activity on his/her own prior is
assigning it to the class. Such proactive approach would give him/her opportunities
to learn where questions can arise and be ready to answer them. Mason et al. (2009)
stated that teachers need to possess strategies and tactics for extracting structural
relationships and bring them to the fore for the students. Thus, suggesting students
other venues rather than telling students fixed solutions is a priority.

6.3 Sequencing STEM Modeling Activities Within
Mathematics and Science Curricula

One of the themes that emerged from the STEM literature was the sequencing of
modeling activities within the school curriculum. There can be two distinct voices
identified in this debate; one advocated by, for instance, Blum et al. (2007)
suggesting that modeling activities be implemented prior teaching new content,
and another view presented by Chinnappan (2010) suggesting that modeling activ-
ities be applied after new content is delivered to students. Both strategies have
individual merits. The decision which sequencing to take depends on a cognitive
load of the disciplines and the purpose of the activities. If the cognitive load of the
mathematical concept is low and the underpinned scientific context challenging to
visualize (e.g., optimizing area enclosed by a string of fixed length) then such
activity can be conducted prior introducing the formal algebraic technique of that
is embedded in the lab (in here optimization). By using this rote, the students will get
familiar with the mechanics of how the areas are being generated. Thus, they will get
familiar with the contextual background of the process. This familiarity should help
them with an understanding of a formal algebraic technique that will be developed
after the lab. While learning the formal technique and solving similar textbook
problems, students would have a real representation of the idea coded in their
memories that will guide them along necessary trajectories and help to understand
the formal technique. Another possible sequencing is conducting a STEM activity
after theoretical underpinnings are being delivered to students. This strategy can be
implemented when the mathematical representations applied in the activity require
new ideas to be learned (e.g., the idea of periodic or parametric functions). Lesh and
Kelly (2000) contended that students must possess necessary mathematical tools and
knowledge before engaging in modeling activities. Similarly, Koeppen et al. (2008)
advocated that students’ pre-domain knowledge strongly correlate with their
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achievement in problem-solving modeling activities. Three of the proposed labs
(Chaps. 8, 9, and 10) are suggested to be conducted after the math content is being
developed and one activity (Chap. 7) is suggested to be sequenced prior developing a
formal mathematical background. Further research that would allow to quantify
learning effects of each type of sequencing shed more light on the approaches
efficiency. The underlying goal is to have students feel comfortable, enjoy merging
the disciplines while constructing new knowledge, and have the students look
forward to doing more such activities so that STEM becomes a field of their
professional interest.

6.4 General Description of the Proposed STEM Activities

The proposed activities are to serve as contexts for developing students STEM
reasoning skills. The time allocated for students to complete each of the activities
is about 60 min. Merging mathematics and scientific reasoning is not an easy task,
therefore offering more time in class, if possible, is recommended. These activities
are designed to be inserted in mathematics curriculum (pre-calculus or calculus) or
conducted during separately organized units such as extra curriculum activities.
When organized as separate instructional units, e.g., after school, the learning effects
of the lab conducts might be higher because the students would extend the time to
discuss the lab tasks and thus put more intuition in the lab completion. In all the
proposed activities, the final product is a mathematical representation that the
learners will derive and contextualize. The selection of algebraic representations or
scientific concepts was supported by research in mathematics education that pre-
cedes each of the activity. Modeling takes a central stage during these activities, and
it is to be perceived as a method of supporting STEM reasoning. Modeling is also to
be perceived as an attempt of shifting the learner’s focus from deductively searching
for a solution to inductively developing concise and general structures. It is assumed
that through these modeling activities, students will be made aware that the solutions
to problems follow directly from a mathematical model of the problem which
appears as a core idea during the investigations. The modeling processes should
also serve students as a set of representations stored in their long-term memory that
they can retrieve while solving textbook problems. The complexity of the explora-
tions depends on students’ background, yet in most of the activities, the necessary
mathematical apparatus needs to be learned prior the activity conduct because the
purpose of these enterprises is to merge known mathematics structures with science.
For instance, if a quadratic function (Chap. 10) is to be applied and interpreted,
students need to recognize its property to take a maximum or a minimum value. If a
linear dependence is to be used, one needs to acknowledge that the rate of change
between involved variables remains constant (Chap. 8). Without a prior understand-
ing of algebraic structures and their attributes, merging the knowledge might result
in endless trials. Research showed that students need to be familiar with scientific
contexts of the labs as well. Therefore, the selection of the contexts was followed by

6.4 General Description of the Proposed STEM Activities 61

andrzej.sokolowski@lonestar.edu



analyzing science curricula and assuring possessing that knowledge by students.
From the educational research point of view, all the labs can be classified as case
studies. While a detailed quantitative pre-posttest analysis was not employed,
students’ pre-posttest or posttest verbal responses were collected, analyzed, and
discussed. It is hoped that even the general evaluation can serve as a departing
stage for applying and expanding these projects in any school setting.
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Chapter 7
Modeling with Exponential Decay Function

Abstract Understanding rates of change sets the foundations for differential equa-
tions that are central to modeling dynamic phenomena in science and engineering.
While modeling with a constant rate of change is well understood, modeling an
exponential change requires a more detailed approach due to a diversity of its
computing. An exponential model can be characterized by a constant ratio of change
of the quantity, a constant percent rate, decay or growth factor, decay or growth rate,
and so forth. The purpose of this STEM activity was to create a STEM environment
that would enable the learners to discover a constant ratio as a departing block to
construct an exponential model. An experiment of investigating maximum heights of
a bouncing ball was used as a scientific context. This phenomenon was selected due
to providing observable and measurable data. A pretest analysis was used to identify
students’ weaknesses, and the posttest analysis has been used to discuss students’
changes of perception on modeling exponential behavior. The STEM context has
disclosed that the commonly applied term decay denoting a decreasing exponential
function did not adequately describe the virtue of decaying processes. Conclusions
and suggestions for further studies are discussed.

7.1 Prior Research

Exponential behavior is an essential part of any mathematics curriculum. Its appli-
cations are widespread in the biological, physical, and medical sciences. Continuous
exponential functions dominate the applications of the exponential model in science,
and their discrete counterparts extend the applications to business, finance, econom-
ics, and accounting. More specifically, exponential decay is being used in RC
(Resistor-Capacitor) circuits, damped harmonic oscillations, the growth of a nuclear
chain reaction, attenuation of sound or light, compound interest, population growth,
logistic growth, and so forth. The set of applications further expands when differ-
ential equations involving constant percent rates of change are considered. What
makes the process of formulating an exponential function distinct from, for example,
linear? Thompson (2011) claimed that one of the most critical aspects of the
exponential model is understanding the idea of rate as being able to attend to
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investigating changing phenomena outputs and simultaneously compute the rate of
the change of that outputs over a specific domain. These deficiencies draw on limited
opportunities that math students experience with exploring dynamic phenomena. In
the line of this finding, several educators emphasized high effects of contexts in
developing the understanding of functions and rates. When considering an expo-
nential decrease, a radioactive decay seemed to be the most prevailed that students
experience in high school education. To reflect on applying a dynamic phenomenon,
Brendefur et al. (2014) used a setting of bacterium population to spur students’ free
thinking about exponential growth. Jesse (2003) suggested an activity that utilized a
series of time intervals and plotted the amount of mass as a function of the
accumulated time on a semi-logarithmic scale on which the slope of resulting linear
graph represented the time of the half-life of the substance. While deciding about
using an exponential function, Huestis (2002) suggested that an exponential decay
function is used because of two physical principles: (a) radioactive nucleus has no
memory and (b) decay time interval for any two nuclei of the same isotope are
governed by the same probability distribution. Castillo-Garsow (2013) focused on
contrasting continuous and discrete growth rates with the aim of finding similarities
between these representations. Touchstone (2014) proposed calling exponential
decay a survival and expressed it as $1(1 � r) and growth expressed as $1(1 + r)
called arrival. The symbol r in both models represented the magnitude of growth or
decay rate, respectively. Lo and Kratky (2012) found out that students had difficul-
ties determining whether a given real-life situation would be best modeled by a linear
or an exponential function. They claimed that this was accounted for a lack of
understanding of the nature of rate of change in each of the models and further
suggested to emphasize that in a linear model, y ¼ mx, the rate, m is constant, and
that the rate can take different values for an exponential model, y¼ a(b)x, depending
on the value of the base. Wanko (2005) suggested applying the idea of probability
and using a graphing calculator to find an exponential regression and identify the
decay/growth rate. Ärlebäck et al. (2013) proposed measuring the potential differ-
ence on a discharging capacitor to model exponential decay and found out that
students’ difficulties projected from either the interpretation of the decimal value as a
percentage of the voltage change across the capacitor, or from being unable to
identify and interpret the time factor in the interpretation of the decay constant. By
selecting a context that required an extensive physics background, these researchers
realized also that students who attempted to interpret the constant base using the
context of the model were less successful than those who attended to only the
mathematical aspects of the constant. Developing students’ ability to correctly
interpret percentage which arises from the constancy of the successive ratios in an
exponential model was flagged by Ärlebäck et al. (2013) as an area in need of further
research. Shea (2001) investigated how science textbooks introduce the idea of
exponential behavior and found out that about 90% of 60 science textbooks
poorly elaborated on the algebraic underpinnings of the concept of decay. A typical
introduction of exponential growth in a high school mathematics courses, according
to Confrey (1991), was to post a problem that required repeated multiplication and
then connect that algorithm to an exponential notation that enabled the students to
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construct an exponential function. Such methods of introducing exponential
behavior prevail in currently used math textbooks as well. A post hoc analysis of
some pre-calculus textbooks (e.g., Stewart 2006; Swokowski and Cole 2008) has
revealed that modeling with exponential functions is typically initiated by successive
multiplications of the base that lead to an exponential algorithm. Subsequent word
problems provide students often with a formulated decay or growth function and
require using a calculator to evaluate the models. It seems that working on such
problems, does not expose the students to the process of building up the model and
diminishes the task of critically evaluating given data for the exponential model to be
applied.

In sum, the review shows that while science emphasizes the interpretation of
exponential behavior, mathematics emphasizes the algorithm for computations.
A lack of underlying the connections can be a reason for students’ difficulties in
problem-solving that require merging these two views. Furthermore, there is little
agreement on how the exponential growth or decay should be introduced and how to
overcome challenges in a manner consistent with both science and mathematics
methods. The decay or growth factors are often extracted from stochastic processes
or by an iterative multiplication or division processes. These extractions are often
made without a clear connection to their corresponding percentage interpretation that
is very often used in everyday life to describe exponential changes. It is hypothesized
that the lack of connections causes that the exponential behavior is challenging for
students to express as an algebraic function. The literature provides numerous
studies where the idea of exponential behavior was investigated. However, STEM
studies integrating scientific and mathematical interpretations of the model have not
been found. The STEM activity is an attempt to fill in the gap.

7.2 Analysis of Pretest Findings

The prior research revealed a high diversity of the methods of mathematizing
exponential behavior and a vast range of applications. Both these findings signify
the importance of these topics in students’ general STEM disposition. To learn more
about students’ perceptions of the structure of exponential functions, I have admin-
istered a pretest to a group of 25 pre-calculus students. These students had studied
exponential functions in previous math classes. The pretest focused on the core idea
of an exponential behavior, thus the nature of the base of the model. Students were to
provide a verbal response to the following question:What is the interpretation of the
base of an exponential function when applied in real contexts? The students’
responses were clustered into three groups due to their quality. Responses placed
in group 1 (N ¼ 4, 16%) contained the term percent or rate to describe the base.
Responses to group 2, with the largest population (N ¼ 15, 60%) linked the base
with the initial value of the quantity. Group 3 (N ¼ 6, 24%) contained responses
that did not contain any terms that would indicate an understanding of the base, for
example, one student wrote: “the base shows the lowest possible denominator.”
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The responses revealed that the students understanding of formulating the base in the
exponential model is weak. It was also interesting to note that not many students
associated constant percent ratio of quantities of interest as a building block of the
exponential model. It could be further concluded that students did not have a clear
picture on how to differentiate between rate and ratio which could also transfer to
difficulties with differentiating between linear and exponential models that were also
reported by Ärlebäck et al. (2013). A large group of students mistakenly associated
the base of an exponential function with the initial function value or its output value.
These students attributed the meaning of the base as perhaps a base function value
that provided a starting point for the decay or growth. Thus, a necessity to differen-
tiate between these function components emerged, and a STEM activity whose
independent and dependent variables can be conceptualized using their physical
units provided an excellent environment for attempting to establish clarity of these
function components.

Table 7.1 summarizes findings from prior research and the pretest about students’
handling of exponential models. The table contains also proposed modifications of
introducing the model that was pursued in this study and included in the instructional
support of the lab.

Discussion of these modifications is presented in Sect. 7.3.

7.3 Introducing Exponential Model Using STEM Contexts

This section provides a theoretical background that should familiarize the instructor
with the activity design and its STEM intertwining. The focus of this part is
contrasting rates and ratios as students typically study the ideas in their primary

Table 7.1 Findings of students’ interpretations of exponential models

Challenges with understanding of exponential
model Suggested modifications

A lack of clarity of how the base of the expo-
nential model is computed.

Introducing the ratio as a fundamental building
block of an exponential function.

A weak link between the exponential model
and the idea of the percent.

Introducing percent as an imminent concept
derived from the ratio.

An unclear position of the initial value of the
quantity in the exponential model.

Underlying the quantities initial value as a
component indicating the physical unit of the
exponential model.

Lack of differentiating between the amounts
that decay and the amount that remains within a
system.

Emphasizing the base as a ratio indicating the
percent of the quantities that remain within the
system.

Lack of opportunities to verify formulated the
model in real-life applications.

Using experimental setup to have students
verify a coherence of the derived model with
measurable outcomes.
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mathematics education. Bringing forth these concepts and highlighting their simi-
larities and differences prior discussing exponential behavior appeared as a connec-
tion worthy of establishing. Departing from that comparison, the contextual
introduction of the exponential model is also discussed.

7.3.1 The Difference Between Rates and Ratios

What is the difference between ratio and rate? Arons (1997) defines ratio as a
division of two homogeneous quantities, for example, 12m3

6m2 , 3 cm2

2m2 , or 3 cm2

8 cm2. Rate is
defined as a division of two heterogeneous quantities, in which the denominator
represents usually the quantity of time, and the numerator, the quantity of interest,
for example, 7m2

6 s , 20 kg
5m2 , 3m3

6 h . Ratios and rates can be reduced or simplified by
division. After that operation, the resulted magnitude represents a unit ratio or a
unit rate, for example, 12m

2

6m2 ¼ 2m
2

m2 ,
20 kg
5m2 ¼ 4kg

m2. Ratios can reduce to be dimension-
less however, rates retain the units. Even though rates can be dimensionless, it is
recommended that the units are kept with the magnitude for their correct interpre-
tation, if not involved in a percentage conversion. Both representations can lead to
formulating proportions under the conditions that both are embedded in direct
proportionality relations. For example, 20 kg

5m2 ¼ x
2m2 or 12m2

5m2 ¼ 8m2

y . If the left side of

the proportion contains two variables, a linear function can be formulated; 20 kg
5m2 ¼ y

x

thus y ¼ 4kg
m2

� �
x, where in this case, y represents kg, an x represents m2. The rate 4kg

m2

takes another more sophisticated interpretation in this model as the slope when it is
graphed in the Cartesian plane. Visually, the slope illustrates the inclination of the
line to the horizontal axis, commonly known as rise

run . If a set of variables is
considered, a constant rate of change of two quantities implies the application of a
linear function.

7.3.2 Building Contextual Background to Elicit
an Exponential Model

A ratio of a dimensionless quantity can lead to expressing the quantities in a percent
form. For example, if a colony of bacteria increased from 16 to 32 in 3 h, then the
ratio of the populations can be expressed as R ¼ 32

16 ¼ 2 . One can say that the
population increased twice or by 100% of its initial value over the period of 3 h. If
more data can be collected (see Fig. 7.1) and if that ratio proves to remain constant
over each 3 h period, then an exponential function can be constructed. How to make
a transition from a ratio representation to a function? Let’s generate a table of values
and plot the function graph (see Fig. 7.1).
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Let’s check the behavior of the rate of change of population versus time and
examine if a linear model can be used. By verifying three rates, one learns that:

(a) For 0 � t � 3h, rate ¼ 100
3

bacteria
hour

(b) For 3 � t � 6h, rate ¼ 200
3

bacteria
hour

(c) For 6 � t � 9h, rate ¼ 400
3

bacteria
hour

Thus, the rate of change of the bacteria is not constant, and a linear model must be
rejected from the consideration. Let’s compute the ratios, labeled R, of the
populations after each 3 h period:

(a) R ¼ P 3ð Þ
P 0ð Þ ¼ 200 bacteria

100 bacteria ¼ 2

(b) R ¼ 400
200 ¼ 4 bacteria

2 bacteria ¼ 2

(c) R ¼ 800
400 ¼ 8 bacteria

4 bacteria ¼ 2

The physical function units, the number of bacteria cancels out producing dimen-
sionless ratios of function values that are equal to 2. This constant ratio implies an
exponential behavior and thus an exponential model to be applied. Thus, for an
exponential model to be valid, one must seek a constant ratio; R ¼ yn

yn�1
that must be

constant for any two consecutive values. Other interpretation of that statement is that
the quantity change is proportional to its current value yn ¼ (yn�1)R. In the discussed
above example, the population of the bacteria culture, let’s call it P(t), doubled every
3 h or increased 100% of the prior population after every 3 h, thus P(t2) ¼ P(t1)
(2) which leads to P tð Þ ¼ Po 2ð Þ t

3 if a function representation is considered. The
modification of the expression for the function exponent is dictated by the growth
factor that was computed over a period of 3 h. In that model, Po represents the initial

Time 
(hours)

Bacteria population 
(in hundredth)

0 1
3 2
6 4
9 8

12 16
15 32
18 64

0
10
20
30
40
50
60
70

0 5 10 15 20

Fig. 7.1 Graph and table of values representing an exponential growth
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value of the quantity, (the population), and 2 is the ratio of any two consecutive
function values that must always be dimensionless because it is used to compute the
magnitude of the function value not its physical units. This statement can be
generalized as

Function value at tð Þ ¼ The initial function valueð Þ Ratioð Þ General time variable
Time period of the ratio computing:

Symbolically, this expression takes the form: P tð Þ ¼ Po Rð Þ t
T . It is to emphasize

that the physical unit of the quantity of interest is determined by the unit of the initial
function value. While not discussed in mathematics textbooks, the exponent must
also be dimensionless. If in P(t)¼ Po(R)

t the time, t, is expressed in years, then in the
full form of the function isP tð Þ ¼ Po Rð Þ t

1 year. In the textbooks, such function is rather
expressed as P(t) ¼ Po(R)

t. When context is provided, the significance of the
dimensionless form of the ratio R, and that of exponent can be brought to students’
attention. These two elements can be used as additional means of verifying that the
model is correct. How to compute the percent of decay or growth?

If R > 1, for example, R ¼ 1.2 then a growth function can be constructed. In this
model, 0.2 is called the growth factor and the percent growth in this model is 20%. It
also means that the system accumulates 120% of its initial amount over a specified
time period. The interpretation of the ratio, for instance, R ¼ 0.7 as a decay factor
requires a more detailed insight.

If 0 < R < 1, for example, R ¼ 0.7, then it means that 30% of the system value
decays and the system retains 70% of its previous value. The lab has revealed that
students often think that the decay function computes the amount of the quantity that
decays, not the one that the system retains. Labeling the value of 0.7 a decay factor,
because of its value less than one, does not explicitly reflect on the system direction
of change, and students need to be explicitly informed about this nuance. In sum, in
both models, the ratio represents a division of y nþ1ð Þ

y nð Þ of function values that shows

as a ratio of retained quantity within the system (or experiment), not the ratio of
function values that decays. This delicate nuance can be discussed with students
while performing real experiments when the context can be used to support the
reasoning. It is to note that a typical radioactive decay with a base of ½ is not
sensitive to this nuance.

7.3.3 Logistics of the Lab

The instructor explained the process of taking data and highlighted the precision of
data taking. The instructor explained that while the students would draw a contin-
uous graph, a better fit for the data was a discrete form. A continuous model could
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also be considered to visualize the ball’s maximum height. A class of 25 students
worked in groups of 3–4 students. Students took data in groups and discussed the lab
completion in groups. However, each student was supposed to have own hypothesis
and computations. Each group received a baseball and a meter stick. One student of
each group dropped the ball from a 2m height and the other recorded its movement
using a video camera. Videotaping allowed for more precise measurements of the
successive heights. Each student received an instructional support (see the Sect. 7.4).

There was a physics component added at the end of the lab analysis; the law of
conservation of energy that provided a bridge to problem-solving in science. Stu-
dents, especially those taking a physics course found that part intriguing and
thought-provoking.

7.4 Lab Outline

Purpose: In this lab, you will formulate an algebraic function to express a maximum
height of a bouncing ball. You will also construct a function that would represent the
maximum potential energy of the ball as it bounces and apply this idea to formulate a
general law of conservation of energy for the bouncing ball.
Materials Meter stick, a variety of tennis balls, French curves, TI-84, iPhone to
videotape the motion.
Problem 1:What type of function, exponential, linear or quadratic, etc. can be used
to model the maximum height of a bouncing tennis ball after each rebound? Justify
the answer.
Hypothesis ______________________________________________________
Problem 2: What quantities are needed to construct the function? Support your
answer.
Prediction_______________________________________________________
Problem 3: If the graph is plotted in height vs. bounce number axes, will the graph
have:

(a) A real y-intercept?

Prediction_______________________________________________________

(b) A real x-intercept?

Prediction_______________________________________________________
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7.4.1 Lab Procedure

You will work in groups of three students and videotape the motion of the ball to
attain more precise measurements.

Meter stick

• Release the ball from a height of 2 m and measure the maximum height to which
the ball raises after the first, second, third, and fourth bounce.
Note videotaping will help to identify the height more accurately.

• Record the heights in the table provided below and each value to the nearest
centimeter (e.g., 1.51 m, or 0.72 m).

• Note n, in the table, represents the bounce order number, e.g., for n¼ 1, you will
record the height after the first bounce.

• Perform two separate trials and find the average heights for each bounce.

7.4.2 Data Analysis

On the grid paper provided below, sketch graph of Average height after each
bounce versus bounce number. Use the highlighted rubrics from the table (the
last row from Table 7.2).

• Identify the independent variable (IV) and label it on the horizontal axis ______
• Identify the dependent variable (DV) and label it the vertical axis____________
• The initial height of 2 m represents the y-intercept of the function and thus its

initial value.
• Spread out the horizontal scale so that the graph fills in the entire grid (e.g., begin

from 0 and count six grids to label n ¼ 1, etc.).
• To assure correct labeling, label Average Height on the vertical axis and Bounce

Number on the horizontal axis.
• Use French curves to draw a smooth graph (Fig. 7.2).

Now you will formulate an algebraic model for the graph. Read and answer the
questions that follow. The answers will guide you through the process of finding the
model.

• What type of function does the graph resemble? _________________________

Table 7.2 Maximum height of a bouncing ball after each consecutive bounce

Initial height
n ¼ 0

Height after
n ¼ 1

Height after
n ¼ 2

Height after
n ¼ 3

Height after
n ¼ 4

Trial #1 2 m

Trial #2 2 m

Average
height (m)

2 m

7.4 Lab Outline 73

andrzej.sokolowski@lonestar.edu



• Do you expect that the graph will ever cross the horizontal axis? Support your
answer using the experiment outcomes. ________________________________

• What is the physical unit of the base? What is the interpretation of the base
of exponential function? Provide an explanation using the experiment context.
_______________________________________________________________

• The main component of any exponential function is the base of the power of the
function. This experiment is represented by the ratio of two consecutive heights
of the ball. Should the ratio remain constant after each bounce? Support your
answer? ____

• What parameters affect the magnitude of the ratio? Select the once that you think
apply: mass of the ball, properties of the floor, size of the ball, acceleration due to
gravity, the initial height of the ball, the air resistance, others: ______________

• You will calculate the ratio for two consecutive bounces and take the average to
increase the precision. Express the magnitude (the value of the ratio) to one
decimal place and record your computations in Table 7.3. The value of the ratio
0 < R < 1 represents a decay. However, it represents ratio of the heights that the
system retains. Refer to Table 7.2 to compute the average retaining ratios.

Fig. 7.2 Graph of height vs. bounce number

Table 7.3 Computations of the base of the exponential model

Formula Ratio (R)

Decay ratio at the first bounce ¼ Averge height after the first bounce
The initial height

� �

Decay ratio at the second bounce ¼ Averge height after the second bounce
Averge height after the first bounce

� �

Decay ratio at the third bounce ¼ Averge height after the third bounce
Averge height after the second bounce

� �

Decay ratio at the fourth bounce ¼ Averge height after the fourth bounce
Averge height after the third bounce

� �
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• Summarize the computations in Table 7.4.
• Does the Decay ratio appear to be constant? (Discrepancies within 10% can be

accounted for a low precision) _______________________________________
• What is the average value of the decay ratio? R ¼ ________________________
• Does the ratio retain a physical unit? __________________________________

Referring to the value of the decay ratio answer the following:

(a) What is the decay factor in this model? _______________________________
(b) What is the percent of the height lost by the ball at each bounce? ___________
(c) What is the percent of the height retained after each bounce? ______________

The decay ratio R provides the base of the power of the exponential model. To
formulate the model, the initial value of the quantity of interest (the ball’s initial
height above the floor) is needed. Note that the unit of the initial quantity provides
also the physical unit of the function values. Identify the initial height and complete
the model.

• Write the function equation referring to the general model H(n) ¼ Ho(R)
n. _____

• Verify your hypotheses and predictions to the problems #1–3 from the first page
of the lab and comment any discrepancies.

Hypothesis 1 ____________________________________________________
Hypothesis 2 ____________________________________________________
Hypothesis 3 ____________________________________________________

7.4.3 Model Verifications

1. Suppose that you dropped the ball from a height of 1.2 m.

(a) Using the functionH(n) that you derived, compute the height to which the ball
should rebound. ________________________________________________

(b) Verify the computations by dropping the ball from the indicated height, 1.2 m
and measure the height to which it rebounded. ________________________

(c) Do the values correspond? If not, provide a source of error.

2. Do you expect that the value of the base of the exponential model R depend on the
initial height of the ball? Support your answer. __________________________

(a) Drop the tennis ball from a height of 1.7 m and record the height to which it
rebounded____________________________________________________

(b) Calculate the ratio of the heights. __________________________________
(c) Does the value of the ratio correspond with the one earlier computed?

Table 7.4 Summary of the
computed individual bases

Bounce number (n) 1 2 3 4

Decay ratio (R)
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(d) Compute and interpret the following limit;
limn!1H nð Þ ¼_________________

(e) Does the limit value support the experimental outputs? _______________

3. Now you will use a graphing calculator and generate the algebraic model for the
function following general procedures (refer to the TI instructions) of finding a
regression curve.

Report the general model H
(n) ¼ _____________________________________

4. You have learned that the initial function value (the initial height) has no bearing
on the decay ratio (and consequently the percent rate). Provide possible explana-
tions for that independence.__________________________________________

7.4.4 Integrating a Physics Component

Part 1: Finding function to model gravitational potential energy of the
bouncing ball.

In this part, you will merge further a scientific context that pertains to the
computed decay ratio. The following is a contextual background that will help you
apply math tools to analyze the situation.

An object that is held above a certain height will possess a gravitational potential
energy that can be computed using U(H ) ¼ mgH where m is the mass of the object
expressed in kilograms, g is the intensity of gravitational filed on the earth; g ¼ 9.8
m/s2, and H the height expressed in m. Note that U(H ) ¼ mgH can be considered a
linear function due to H being the only variable. If the height H and the mass is
known, the function can be used to compute the energy. Suppose though that you are
to compute the gravitational potential energy U(H ) of the ball after each bounce.
How to construct a U(H ) that instead of H will have n as the independent variable?
Answering the questions that follow should help you formulate the U(n).

1. Can H(n) represent an inner function in (n)? ____________________________
2. Write down H(n) that you have formulated in the Sect. 7.4.2
3. Formulate U(H(n))¼_______________________________________________
4. On the grid provided below, sketch U(H(n)).

Note the independent variable of the U(H(n)) is the bounce number n.

Part 2: Finding function to model energy dissipated by the ball at the impact.
The collision with the floor is non-elastic because the ball loses gravitational
potential energy shown by a decrease of height to which it bounces up. The loss
of potential energy is converted into thermal energy (heat) denoted usually as Q.
How to find a function to model the heat dissipation? Finding empirically the
function representing the heat dissipated is not an easy task because there are too
many factors affecting this process. Thus, other means need to be developed. One of

76 7 Modeling with Exponential Decay Function

andrzej.sokolowski@lonestar.edu



the means is considering the ball-floor as a closed system that retains its total energy
throughout the entire experiment. What is the amount of the energy? You will note
that the energy of the system is equal to the initial energy of the ball at the height of
H ¼ 2 m. Let’s denote it Ui(2). Compute the value of the energy using the
experiment outcomes

Ui 2ð Þ ¼ mg2 ¼
As the ball bounces up and down, where n represents an nth bounce, the total

energy of the ball-floor system can be expressed as Ui(2) ¼ U(n) + Q(n) and it
remains constant due to the system being isolated and applied law of conservation of
energy. As the gravitational potential energy of the ball decreases, the heat energy
increases due to an inelastic collision of the ball with the floor. The goal of the
reasoning is to learn how the Q(n) function behaves. Following are some steps that
should help you with the process.

• Replace Ui(2) by the computed earlier value and solve the formula Ui(2)
¼ U(n) + Q(n) for Q(n)¼___________________________________________

• To sketch Q(n), find its initial value, thus Q(0) ¼ and the limit limn!1Q nð Þ ¼
_____

• What is the physical interpretation of the limit of the heat function? _________
• Sketch the function on the same axes (Fig. 7.3).
• Compare the limit values of lim

n!1U nð Þ ¼______ lim
n!1Q nð Þ ¼_______________

• Do the limit values reflect the reality of the experiment? ___________________

7.5 Lab Reflections

What have you learned? What? _________________________________________
________________________________________________________________

7.6 Posttest Analysis and General Discussion

Students took the data and formulated the exponential equation without major
obstacles.

Three problems that students answered the next day served as a posttest measure.
In addition to a parallel pretest question, the students were to solve four quantitative
multiple-choice problems whose evaluation follows. These problems focused on
testing the students’ ability to identify a correct model for an exponential growth or
decay. Percentages of correct answers are shown in bold font.
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Problem 1: A sample of a radioactive substance has an initially a mass of 300 g.
After one day, the sample retained 6/7 of the original mass. Which function best
models the mass of the sample, m(t), at any time, t?

Answer choices Students’ choices (%)

(A) m(t) ¼ 300(7/6)t 6

(B) m(t) ¼ 300(1 � 7/6)t 43

(C)m(t) ¼ 300(6/7)t 51
(D) m(t) ¼ 300(7/6 � 1)t 0

This problem tested students’ ability to identify a radioactive decay model. While
many of the students selected a correct answer (C), surprisingly there was a high
percentage who selected choice B. This could be accounted for an association of that
form to a decay model (1 � r). These students did not realize that this choice is false
because the base takes a negative value which is not acceptable in any exponential
function. To improve the percentage of correct answers on this question, an empha-
sis that the base must represent the ratio of consecutive function values is one of the
options.

Problem 2: A tennis ball was dropped from a height of 3m The ball lost 20% of its
original height after each bounce. Which of the functions best models the height h
(n) of the ball? The variable n represents a bounce number.

Fig. 7.3 Graph of the potential energy of the bouncing ball and the maximum height
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Answer choices Students’ answers (%)

(A) h(n) ¼ 3(1 + 0.2)t 0

(B) h(n) ¼ 3(0.8)t 80
(C) h(t) ¼ 300(1 � 0.8)t 9

(D) h(t) ¼ 300(�0.2)t 11

This problem was rooted in the context of the lab, and its high correct percent rate
can be attributed for students’ referencing the provided STEM context. Though,
about 20% of the students misinterpreted the algebraic meaning of the base when
percentage was given. The idea of building an exponential model given by a percent
rate was embedded in the lab, yet there seems to be more done to differentiate
between given decay percent rate, and its relation to interpretation of the ratio of the
decay model.

Problem 3: The initial population of a colony of bees was 100. It has revealed that
the ratio of the population computed over a 1 h period was four. Which function best
models the population, P(t), of the colony in the function of time, t?

Answer choices Students’ answers (%)

(A) P(t) ¼ 100(4)t 69
(B)P(t) ¼ 100 + 4t 23

(C)P(t) ¼ 100(4)t 4

(D) (t) ¼ 4(100)t 4

This problem targeted the students’ ability to differentiate between rate and ratio
and respectively a linear and exponential model. Majority of the students considered
the given ratio as a dimensionless quantity representing the base of the growth model
and selected a choice C. Some students (N¼ 6, 23%) considered the ratio as a rate of
a linear model. While there was no direct information in the problem, about
exponential growth of the population, a linear model could have been rejected by
verifying the physical unit of the quantity that resulted from considering a linear
model; [P(t)] ¼ [number of bees + time unit] that leads to a clear inconsistency in
formulating the population function. Verifying units as a support for formula
confirmation is used in science, mainly physics. Inclusion of this technique to
support problem-solving in mathematics seems as one of the areas increasing
STEM readiness.

Problem 4: At the time 1 PM, the number of bacteria in the culture was 200, at the
time 3 PM, the culture grew to 800. What is the growth ratio of the bacteria culture?

Answer choices Students’ answers (%)

(A) 1/4 12

(B) 1/3 4

(C) 3 36

(D) 4 48
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This problem tested students’ ability extracting necessary information to build the
base of exponential model. The growth ratio was computed correctly by 46% of the
students. A high percentage of students (36%) selected an answer that resulted by
creating a quotient of the time instants. These students computed t nþ1ð Þ

t nð Þ instead of
y nþ1ð Þ
y nð Þ . While both ratios did not carry out dimensions, ratio of time instants is not a

part of the exponential model.
When considering differentiation between exponential decay and growth (across

all these problems) the students selected correct choices. It seemed though that more
attention is needed to differentiate between rates and ratios as using either linear or
exponential model follows this differentiation. Students would be encouraged to
adopt the technique of verifying the unit of the computed quantity as an additional
means to support algebraic processes.

To have students acquire a deeper understanding of these concepts, providing a
general categorization of the types of problems on exponential modeling is
recommended. I suggest formulating three general categories depending on what
quantities are provided (see the categories below). Each set of provided quantities
will lead to finding a general exponential model. Such generalization can be
discussed with students using the lab outcomes or other contexts.

Category 1: Provided is a set of two pairs of coordinates. For example, (2, f(2)), (6, f
(6)), then compute the ratio, R ¼ f 6ð Þ

f 2ð Þ. Identify the period for computing the outputs:

T¼ 6� 2¼ 4 and use f tð Þ ¼ f 2ð Þ Rð Þ t
4. This model can also be derived using system

of two exponential equations.

Category 2: Provided are the initial value Po and a percent growth ratio computed
fixed time interval. For example, R ¼ 2%computed over 3 h. Use the same general
model, however pay more attention to the base formulation that is R ¼ 1 + 0.2 and
P tð Þ ¼ Po 1:2ð Þ t

3.

Category 3: Provided is a decay ratio. As earlier discussed a caution need to be
given to problems that explicate on the percent left or decayed within the system. For
example, if 60% of the quantity decayed over 5 h, then the amount left within the
system can be computed from tð Þ ¼ f 0ð Þ 0:4ð Þ t

5. According to the general interpre-
tation, the ratio represents what part of the initial value is retained in the system.

The students should be provided with opportunities to make transitions from one
category to another.

The law of conservation of energy (physics addition to the lab) was not included
on the posttest. This part of the lab despite provided contextual support appeared to
be more challenging than expected. Many students tried to find the heat function
Q by referring to the standard formula Q ¼ mcΔT and could not move forward with
the solution process because of the inability to find the mass, heat capacity, and the
temperature change of the floor. Upon providing further suggestions on expressing
the law of conservation of energy as a function and solving the equation for Q, the
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students completed that part. Students, especially these taking physics engaged in
the math-science interface more deeply than the other. However, it is seen that more
scenarios of similar contexts should the students practice prior applying this idea is
the real experiments.

The students did have questions regarding the interpretation of the decay factor,
decay ratio, and the relation between percent of the quantity that decays and a
percent of quantity that the system retains. This area was addressed earlier, however
it required more elaboration. Decay according to the dictionary (The American
Heritage College Dictionary 1997, p. 358) means to disintegrate or diminish.
Thus, this term is associated with the amount of the quantity that exits the system
not with the one that remains in the system after the decay process. In mathematics
textbooks (e.g., see Stewart 2006, p. 245; Swokowski and Cole 2008), the decay
factor is called the base of the exponential model. Following this definition, the
decay factor should rather represent the amount of quantity that decays not the
quantity that remains within the system. Thus, the question that arises is if labeling
the base of an exponential model; a decay factor accurately reflects the physical
properties of the modeled quantity. It seems that the decay ratio should represent the
fraction of the quantity that disintegrated not the one that remained in the system. For
example, if the initial mass of a sample is 300 g, and 100 g of the mass decayed, then
the decay ratio should rather be 1/3, not 2/3 because the fraction of 2/3 represents
ratio of masses that did not decay. This misinterpretation is even more visible when
question asks directly about computing the amount of substance that decayed. In
such questions, students mistakenly evaluate the formulated decay model. The
STEM activity when the students could observe the quantity change disclosed the
nuances and then a need for more research in exponential behavior the terminology
used. Students need to be provided with more details about the formal interpretation
of the decay model before immersing in the lab conduct and work on word problems.
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Chapter 8
Exploring Function Continuity in Context

Abstract Although function analysis is widely applied in science, there are some
areas, like function limits or continuity that are underrepresented. The purpose of this
study is to model motion and support this process by applying function continuity.
Students will model the principles of continuity by formulating position functions
for objects moving along a horizontal path with multiple rules. The scientific context
will be supplied by an interactive simulation calledWalking Man that is available for
free at http://phet.colorado.edu/en/simulation/moving-man. This simulation allows
designing a movement that can be mathematized using piecewise polynomial func-
tions. Function continuity and sided limits will be used as tools to support the
construction of these functions. The activity was conducted with a group of 20 cal-
culus students. It was hypothesized that by applying the principles in context, the
students would realize that function continuity is a critical condition that functions
representing motion must satisfy. Posttest results supported the hypothesis.

8.1 Introduction

Conditions that warrant function graphs adherence to model motion are following:
(a) test function, commonly known as vertical line test, (b) continuity that prevents
gaps and breaks in the function values, and (c) differentiability that assures conti-
nuity of the derivative function. All of these conditions are essential topics of typical
calculus courses. However, applications of these fundamental principles that would
support the importance of their inclusion in mathematics curricula are not often
presented to students. A preliminary survey of calculus textbooks has revealed that
typical problems on these principles gravitate toward verifying if given function is
continuous or differentiable at a specific x-value in its domain. Narrowing the
assessment problems to context-free questions diminishes the importance of the
principle of continuity. Functions representing motion such as position-time graphs,
velocity-time graphs, and acceleration-time graphs constitute an integrated part of
most calculus courses, yet the condition that warrants the functions continuity is not
being discussed. The research on graph construction, sketching, and interpreting
concerns equally the science and mathematics communities (Sokolowski 2018).
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Therefore, immersing calculus students in a lab that would allow exploration of
continuity in a STEM context appeared worthy of undertaking. In addition to
exploring continuity and limits, the students will develop techniques of constructing
piecewise functions based on simulated motion.

8.2 Prior Research Findings

Since this study will encompass not only a general function analysis but also the idea
of piecewise functions and the concept of limits, a survey of prior research will target
literature findings in all these areas. The ability to interpret graphs and learn about
the motion, beyond what the graph shows, is essential for general mathematical and
science literacy. Research shows that students frequently struggle with these tasks.
Smith (1996) found out that students often apply fragmented, memorized rules while
solving motion problems. Soon et al. (2011) argued that students’ deficiency in that
areas is due to their inability to initiate a transfer of mathematical concepts to
contexts outside of mathematics classroom. One of such difficulty that drew a
substantial body of research was the inability of translating between object’s path
of motion and a respective position-time graph (Leinhardt et al. 1990). In identifying
the source of these misconceptions, Carlson (1999) noticed that students think of
velocity and position graphs as a picture of a physical situation, the path of motion,
rather than a set of input and output values that when plotted in XY coordinates
generate the graphs. A similar conclusion was reached by Perez-Goytia et al. (2010
October) who contended that understanding the physical concepts is not sufficient
for satisfactory interpretation of graphs and suggested putting more emphasis on
interpreting graphical representation in science classes.

While motion can be depicted by various functions, piecewise functions are used
very frequently in mathematics and physics. Piecewise functions include several
function rules restricted to specific domains. Being composed of multiple algebraic
rules makes these functions challenging to sketch and interpret (Chazan and
Yerushalmy 2003). Some researchers (Hohensee 2006 November) argued that the
problem with sketching piecewise function be rooted in multiple domain segments
and suggested introducing discrete piecewise functions prior approaching continu-
ous once. Markovits et al. (1986) found out that involvement of more than one rule in
denoting a piecewise function makes some students think that a piecewise notation
depicts more than one function.

Function continuity and the idea of limits are central in calculus. High abstract load
of the definitions followed by an extensive symbolism used to denote algorithms and
a lack of connections to students’ prior experiences makes these concepts difficult to
understand (Bressoud et al. 2017). A common error in students’ interpretation of
function limits is the notion that functions do not attain their limits values (Szydlik
2000) which can result from a lack of establishing links between function limits
values and their applications in real-life situations. Bezuidenhout (2001) argued that
the main reason for difficulties in learning the principle of continuity is a deficiency in
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understanding the underpinning of the limit concept. In a search for methods of
improving this understanding, Maharajh et al. (2008) investigated the effects of
mapping the concept of the limit image with the definition of limits. Others (Brijlall
and Maharaj 2011) proposed highlighting the cognitive and affective domains while
proving or disproving function continuity. Fernández-Plaza et al. (2015) investigated
students’ interpretation of sided limits and concluded that the formal way of evalu-
ating this type of limits does not correspond with the natural direction of function
evaluation which caused students’ difficulties with computations of these limits.

While analyzing prior research on sketching piecewise functions, investigating
function limits and continuity, the idea of applying these principles in the context, for
example, motion, was not found. It is hypothesized that embedding the idea of
continuity in a purposeful task of construction motion functions will help students
realize the importance of the principle and possibly improve the conceptual
understanding.

8.3 Formulating a Contextual Framework

This section is to help the instructor guide students through the process of contex-
tualizing the idea of piecewise functions and continuity. It also discusses some
methods of introducing the STEM context to math curriculum. This paragraph can
also be considered as a reference or a theoretical introduction that is to enrich
instructional support during the lab conduct.

8.3.1 Review of Conditions for Continuity Using Function
Symbolic Form

Motion problems provide an excellent opportunity for developing the idea of
continuity because, for example, a position function must not only be defined at
each time instant on its domain but also it must be continuous. These conditions
reflect the fact that an object cannot disappear at one location and be recreated at
another. The object’s continuum of being at specific locations at each time instant
during given time interval is supported by science. The precision of graphing
piecewise functions when depicting motion requires then several conditions to be
met: (a) verification of being defined at each time instant on the domain,
(b) adherence to the principle of possessing one dependent variable for each inde-
pendent, and (c) satisfying a principle of continuity of the graph. All the conditions
call for specific procedures to be applied, for example, determining if there are no
gaps on the domain of the function or testing if the right- and left-sided limits are
equal everywhere, especially at the time of instants where the rule of movement
changes. A brief review of these procedures and their interdisciplinary links to
physics as follows.
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While not all functions must be continuous or differentiable to represent real
events, these that are characterized as representing motion must satisfy these condi-
tions. These conditions were intuitively formulated by Leibnitz and called the Law
of Continuity (Child 1920). The law of continuity informs that nature must behave
continuously, which translates to algebra as a condition that functions depicting
motion cannot allow discontinuity. In the calculus textbooks, the law of continuity is
a part of functional analysis, and it comprises of three different conditions. These
conditions merely state that a function must be defined on each element of its domain
and must be continuous and differentiable. Should these conditions be met, the law
of continuity is satisfied, and the function represents real motion. Following are the
details of mathematical symbolism that constitute the first two conditions of the
principle. The third condition, the idea of function differentiability, will not be
discussed as it would exceed the scope of the STEM lab. It is interesting that function
continuity is neither discussed nor emphasized in physics courses and unfortunately
graphs presented in physics textbooks often do not satisfy conditions for continuity
(Sokolowski 2018). Thus, bringing the concept to students’ attention in calculus will
benefit their multidisciplinary education. Situating function continuity in a purposely
defined task will be used as a tool to guarantee that a formulated algebraic function, x
(t), will represent motion according to Leibniz’s law. The conditions for function
continuity at a given point as they will be used in this STEM activity are defined as
follows:

Condition 1: The function must have a value at each time instant, t ¼ a, on its
domain, including the end of the interval, which can be expressed as:

x að Þ ¼ object0s position expressed in meters, centimeters, etc: ð8:1Þ
Condition 2: The function values cannot have jumped. Thus, the function must have
a limit at each time instant on its domain which means that the object must be in
every location on the way it is moving. Symbolically, this condition can be
expressed as:

limt!a�x að Þ ¼ limt!aþx að Þ ¼ limt!ax að Þ ð8:2Þ
Condition 3: The function limits at each point must be equal to function values at
that points which means that a position function must represent a continuous curve:

limt!ax að Þ ¼ x að Þ ð8:3Þ
If all the conditions are met, x(a) is classified as a continuous function, thus

representing real motion. All these conditions apply to position, velocity, and
acceleration functions.
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8.3.2 Using the Conditions for Continuity to Formulate
Piecewise Position Function

Motion-related problems are often embedded in mathematics curricula as a means of
conceptualizing the idea of rates. Because such graphs depict real phenomena, it
makes them applicable to exercise more advance mathematics concepts. During this
lab, the students will not only use function continuity to construct motion graphs, but
they will also translate physical representations of motion into symbolic representa-
tions using the idea of algebraic function. Research shows that students’
multidisciplinary experiences are more robust if a review of the context that is to be
modeled is reviewed prior the activity. Thereby, a discussion about the identifying
equivalent meanings between physical and mathematical representations is needed.

In physics, object’s position can be expressed using positive or negative values
depending on the chosen frame of reference. Position to the left, west, down, or south
is usually considered negative, and respectively position to the right, east, north, or
forward is considered positive. If the object moves along a horizontal line starting the
motion from �4West, then its initial position is �4m or just �4. Throughout the
lab, students will also use the term velocity which can also be considered positive or
negative depending on objects’ direction of motion. For example, motion to the left
will be represented by a negative sign of velocity; �2 m/s and motion to the right
will be represented by a positive sign of velocity. Respectively, velocity of �2 m/s
represents motion to the left whereas 5 m/s would denote motion to the right if the
object moves along a horizontal path. The sign of velocity can also be concluded by
the sign of object’s displacement.

While the core idea of the lab was modeling motion with various rules of
movements, sstudents need to be familiar with the processes of converting kinemat-
ics quantities to terms describing functions (linear in this lab) and how to construct
an algebraic function for given motion parameters. Table 8.1 shows more details on
how to correlate similar meanings. It is suggested that the instructor discusses or
even generates such table together with the students and uses its layout while
working on constructing specific functions during the lab. The subsequent figures
are snapshots of the simulated motion. The teacher will display the simulated motion
while the students work in the lab.

Table 8.1 Equivalent meanings between physical and algebraic terms as applied to motion with a
constant velocity

Kinematics Algebraic interpretation Algebraic representation

Object’s position Dependent variable x

Position formula Position function x(t)

Time Independent variable t

Constant velocity Constant slope m

The initial position
Position at any time instant

The vertical intercept of the function
A point with given coordinates

b or x (0)
(t, x)
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Following is an example of how to construct a piecewise function for a motion
with different rules using the principles of continuity.
Example 1: Suppose that a man starts to walk from a position of 8 m, left and he
walks for 10 s at 1 m/s in the direction to the right. Then, he turns around and walks
at 2 m/s for another 4 s. Construct a position function representing the motion
(Fig. 8.1).
Solution: There are two different rules applied during the motion. Therefore, a
piecewise function with two different segments will be constructed. It is suggested
that the students are provided with a simplified version of Table 8.1 to record given
quantities and their values. For simplicity, the table contains only two columns:
kinematics quantities and their corresponding algebraic representations.

8.3.2.1 Analysis of the First Segment of Motion

Kinematics Algebraic interpretation

Initial time instant of the motion t ¼ 0 s

Initial position x ¼ �8m

Direction of motion
Constant velocity

Positive
Slope ¼ 1

Time interval for first segment motion 0 s � t � 10 s

The function is defined on its first segment 0 � t � 10 s.
Using x(t) ¼ m(t � t1) + x1, one learns that x(t) ¼ 1t � 8 that is valid for

0 � t � 10 s.

8.3.2.2 Analysis of the Second Segment (Fig. 8.2)

By reading the given quantities, one can create the following table of symbolic
representation for the second segment.

Fig. 8.1 Reference line and the man located at the initial position. Source http://phet.colorado.edu

Fig. 8.2 Reference line and the man located at the position of 2 m. Source http://phet.colorado.edu
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Kinematics Algebraic interpretation

Initial time instant of motion t ¼ 10 s

Initial position x ¼ 2m

Constant velocity slope ¼ � 2

Time interval for the motion 10 s � t � 14 s

This segment requires a more detailed analysis, and it does refer to the idea of
using function continuity. The function must be continuous because it represents a
real motion. Therefore, the left- and right-sided limits that represent the man’s
position at t ¼ 10 s must be equal. The left-sided limit, thus the man’s position for
the time very close to 10 s is limt!10� t � 18ð Þ ¼ �8 m; therefore, the man must be
at the same position at t ¼ 10 s and that implies that the function must take the same
value when the time passes 10 s. Using the idea of right-sided limit, one concludes
that limt!10þx tð Þ ¼ �8m. This is a very important step that applies the principle of
function continuity to find the algebraic representation. Using the coordinate of
(10,�8) and x(t) ¼ m(t � t1) + x1, one learns that x(t) ¼ 2t � 18 that is valid for
10 s < t � 14 s.

Using a piecewise notation, the function takes the following form:

x tð Þ ¼ 1t � 8, 0 s � t � 10s
2t � 18, 10s < t � 14s

�

8.3.2.3 Verification

The algebraic form of the function can be verified by checking its continuity at
t¼ 10 s that can be accomplished by using the three conditions discussed in the Sect.
8.2.1. An example of verifying these conditions is asfollows:
Condition 1: Is the function defined in t ¼ 10 s ? ; x(10) ¼ 2; thus, the condition is
satisfied.
Condition 2: Does the function have a gap in its range at t ¼ 10 s?.

limt!10 t � 8ð Þ ¼ 2m and limt!10þ2t � 18 ¼ 2m, since limt!10� t � 8ð Þ ¼ $$

limt!10þ �2t þ 18ð Þ ¼ limt!10 x 10ð Þ ¼ 2m; thus the function does not have a gap
thus this condition is also satisfied.
Condition 3: Are the function limits equal to the function value at t ¼ 10 s ?

Since x(10) ¼ 2m and limt!10 x tð Þ ¼ 2m; thus, this condition is also satisfied.
Since all the conditions are satisfied, the function is continuous t ¼ 10 s. This

example should serve students as a reference for applying function continuity
to model motion using piecewise functions and eventually to become a reference
to check any function continuity at a specific point. Students will have a chance to
observe a construction of the function graph watching the simulated motion and
observe its continuity that is demonstrated in the paragraph that follows.
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8.4 Organizing the Lab

8.4.1 Getting Familiar with the Simulation

In addition to exploring function continuity, the simulation helps students to distin-
guish between the path of motion and the graphs of position (or velocity or
acceleration). While the man walks along the horizontal path, his position in XY
coordinate system is labeled on the vertical axis and the time of walking on the
horizontal axis. Observing the graph production simultaneously observing the man’s
movement helps to differentiate between position-time graph and object’s path of
motion and consequently eliminate the confusion between these two fundamental
representations.

In the tasks below, students translate between kinematics and algebraic represen-
tations and construct position functions for the motion. To enhance the transition to
piecewise functions, the students will also be required to state the domain of each
function.

The simulation can be played on the classroom screen or students can work
independently using the computer lab. It is suggested that the teacher demonstrates at
least one example of generating the graph using the simulation (see Fig. 8.3).

After loading the webpage, http://phet.colorado.edu/en/simulation/moving-man,
the teacher can select Charts from the upper left corner, and the Introductory mode
which can be used to familiarize students with the simulation controls.

In the simulation, the man’s specific position and velocity can be assigned by
using the vertical sliders located on the left side. This assigning can also be
accomplished by typing the numerical values directly into the highlighted boxes
on the left side of the simulation. For a demo, I will use the example from Sect. 8.3.2.

Fig. 8.3 The start-up screen of the simulation shows a man halfway between a tree and a house.
Source http://phet.colorado.edu
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Example: The man starts to walk from 8 m, left. He walks at a speed of 1 m/s in the
direction to the right for 10 s. Then, he turns around and walks at 2 m/s for another
4 s. Generate a position-time graph using the simulation.

If the man’s assigned position is 8 m to the left, type 8 in the position box and
right click. If his velocity is 1 m/s, type 1 in the velocity box and right click. The
velocity graph can be hidden by clicking on the radio button showing a red negative
sign on the right side of the velocity grid. The man will move after clicking on the
play button. The motion condition is to be played for 10 s, and this segment of
motion is illustrated in Fig. 8.4.

The simulation must be stopped at t ¼ 10 s, and the function rule must change at
that time instant. This can be accomplished by stopping the man when his time
coordinate, as read from the horizontal axis, reaches 10 s. The pause button can be
used to stop the motion. Now we enter the next function rule that is the velocity of
�2 m/s. Students might be asked questions like What is the upper limit of the time
interval for this segment of motion or when should the simulation be stopped? In this
case, attention is drawn to the virtual clock or the final time instant of the motion that
is 14 s, and that is illustrated in Fig. 8.5.

8.4.2 Logistics of the Lab

Students will receive a copy of the instructional support and work independently on
completing the lab. Before doing so, the teacher opens up the simulation; moving
man from http://phet.colorado.edu/en/simulation/moving-man displays it on the
classroom screen and demonstrates its features so that the students can use it to
confirm their graphs if needed.

Fig. 8.4 First segment of motion. Source: PhET Interactive Simulations (n.d.)

8.4 Organizing the Lab 91

andrzej.sokolowski@lonestar.edu

http://phet.colorado.edu/en/simulation/moving-man


It is suggested that the teacher demonstrates at least one example of generating the
graph using the simulation. Sect. 8.4.2 contains all the tasks/questions that the
students need to perform or answer. Students might work individually on completing
the lab, or they can work in groups. The teacher takes the role of a guide who helps
redirecting students’ reasoning as needed.

8.5 Lab Outline

Purpose: During this lab, you will construct piecewise functions that will model the
motion of a walking man. While constructing the functions, you will apply the idea
of function continuity.
Problem 1: There are various types of object’s motion: speeding up, slowing down,
moving with constant speed and slowing, moving forward and then backward, etc.
How do you recognize from the content of the motion description that a piecewise
function is to be used to model the motion?
Hypothesis ______________________________________________________
Problem 2: You will observe simulated motion of a walking man and write algebraic
equations for his position.

(a) Does the function have to satisfy the vertical line test at any point in its domain?
_______________________________________________________________

(b) Does the function have to be continuous? What does the condition mean in the
context of the motion? _____________________________________________

(c) Provide a hypothetical motion case when the function does not satisfy this
principle?_______________________________________________________

Fig. 8.5 The man turned around and then walked toward the forest. Source: PhET Interactive
Simulations (n.d.)

92 8 Exploring Function Continuity in Context

andrzej.sokolowski@lonestar.edu



(d) Does the function have to be defined at each time instant when the man is in
motion? Interpret a case, when the function does not satisfy that principle?
_______________________________________________________________

(e) Referring to the context of motion, what is the interpretation of the phrase;
position function must have a limit at each point on its domain?
_______________________________________________________________

(f) Does the function have to satisfy the principles of continuity? Use the context of
motion to support your answer. ______________________________________

You will observe several cases of simulated motion. You will transfer the motion
parameters into algebraic statements and formulate respective functions symboli-
cally and graphically. All three-function representation, verbal, symbolic, and graph-
ical, must be coherent thus all must reflect on given motion conditions. You will use
the condition of the function continuity to support the process of building up the
functions. To confirm the functions, you will answer additional questions.

Note:
(a) If a motion is defined on a given interval, it can include time intervals when the

object stops. (b) Any motion to the left is denoted by a negative velocity.
Case 1: The man’s initial position is 10 m, left to the reference point. He is moving
with a constant velocity of 1.5 m/s to right for 8 s and then he stops for the next 6 s.

(a) Do you anticipate a piecewise function to be used to model the motion? Support
your answer. ____________________________________________________

(b) If you answered yes to the previous question, how many different rules will the
function have? ___________________________________________________

(c) What type of functions, linear, quadratic, etc., do you anticipate applying to
construct the function? Support your answer. ___________________________

(d) Make a preliminary sketch of the position function on the grid provided below.
Note the horizontal axis represents time, expressed in seconds, and the vertical
the position, x(t) expressed in meters. Use a ruler to draw the function segments.
Make sure that the graph is accurate as you will use it to verify the correctness of
the formulated algebraic function.
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(e) Does the function appear to be continuous at t ¼ 8 s? Justify your answer.
________________________

(f) Is the function defined at t ¼ 8 s? Support your answer. ___________________
(g) Write an algebraic representation of the first segment of the man’s motion and

specify its domain.
(h) Find the left-sided limit of the function at the eighth second of motion.

limt!8�x tð Þ ¼_____________
(i) What can you learn about theman’smotion by knowing the limit value?Be specific.

________________________________________________________________
(j) What is the expected function value at t¼ 8 s? ___________________________
(k) What is the expected right-sided limit of x(t) at t ¼ 8 s?

limt!8þx tð Þ ¼____________________________________________________
(l) What did you use to support your claims? Choose the answer(s) that apply:

• Function must be defined t ¼ 8 s ________
• Function must have a limit at t ¼ 8 s _______
• Function must be continuous at t ¼ 8 s _______

(m) Use the information for (e) and (f) to formulate the initial coordinate for the
second piece of the function: _______________________________________

(n) Formulate the second piece of the function and write its specific domain.
(o) Write the entire function using correct piecewise notation. Be specific to the

function domains.

To answer the questions that follow, use the piecewise function formulated in (o).
Verify if the answers correspond to the function graph.

Calculate the man’s position after 4 s of
motion.

When will the man reach a position of 5 m to the right
of the origin?

Calculate the time when he passes the
origin (position of 0.0 m).

Prove using a formal procedure that the function is
continuous at t ¼8 s.

What are the domain and the range of
the function?
Domain: __________range: _________

Suppose that the man stops for 20 s instead of 6 s.
Which of the following will change:
(a) The domain? _____
(b) The range? ______

Case 2: Suppose that the man is walking at 0.5 m/s for 6 s toward the house starting
from the position of 6 m to the left of the origin. During the next 4 s, he walks at 1.5 s
and finally, he stops for the next 6 s.

(a) How many different function rules do you expect to use to formulate the
function? Support your answer. ______________________________________

(b) What type of functions, linear, quadratic, etc., will you apply to construct the
function? Support your answer. _____________________________________.

(c) Make a preliminary sketch of the function on the grid provided below. Use a
ruler to draw the segments and make sure that the graph is accurate.
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(d) While constructing the function, at what time on the man’s journey do you
anticipate applying the principles of continuity? _________________________

(e) Do you expect the function to be defined at these points? __________________
(f) Construct the first segment of the function and clearly write its domain.
(g) Use the formal statement of continuity to find the initial coordinate for the

second segment of the motion.

• x(6)¼____________
• limt!6�x tð Þ ¼ x 6ð Þ ¼ limt!6þx tð Þ ¼____________

(h) Write the initial coordinate for the next segment of motion
__________________________

(i) Find the equation for the second segment of the motion.
(j) Write the entire function using a correct piecewise notation. Indicate the correct

domains.

These questions pertain to verification of the derived model in (j). Solve the
problems and verify the answers with the graph.

Calculate the man’s position at 2 s Find the domain and range of the function

Will the man reach the house located at 8 m? Use
the function to prove/disprove your claim

Find the man’s displacement between
t ¼ 6 s and t ¼ 12 s

Find the time when the man is crossing the refer-
ence point x ¼ 0m

Prove using a formal procedure that the
position function is continuous at t ¼ 10 s

Refer to the problems from the first page of the lab and confirm or refute your
hypothesis.

Problem 1__________________________
Problem 2__________________________
Provide any suggestions that would improve the learning experience from the lab:
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8.6 Posttest Analysis and General Conclusions

There were three free response questions that the students were supposed to answer
that targeted their understanding of various aspects of function continuity.
Question 1: Suppose that you were to construct a position function, x(t), for an
object moving in the east–west direction. The nature of movement (speeding or
slowing or moving with a constant velocity) is not explicitly defined thus any
function, trigonometric, exponential, polynomial, or a combination of these func-
tions (piecewise) could be used. The object was in motion on t1 � t � t2. If an
algebraic function is to model the motion, is it sufficient that the function is defined at
each time instant on t1 � t � t2?.
The answers were clustered into two groups (see Table 8.2) and selected responses
from each group were provided, verbatim. Students who answered yes were placed
in group 1 (N¼ 5, 25%), students who answered no were placed in group 2 (N¼ 15,
75%).

This question addressed the first condition for continuity and students’ interpre-
tation of this case as it applies to motion. While many of the students claimed that
this condition is not sufficient, there were some who thought otherwise. It was
interesting to note that these students’ verbal supports showed that they possessed
a correct intuitive understanding of continuity (see student #2 and #3), yet they
associated continuity of function domain with a continuity of function-dependent
variable which lead them to incorrect conclusions. These students did not realize that
if function x(t) is defined for t1 � t � t2 it does not guarantee that the function will
take all values between x(t1) and x(t2) which is the core idea of continuity. Further-
more, these students assumed that being defined means continuity of the function
range which is not correct. Student 4 claimed that moving object must have a
continuous increasing or decreasing graph. While this is correct, motion graphs
often include objects’ state of rest; thus, this case needs a further reinforcement
although the simulation did provide an example of such case.

Table 8.2 Students’ reponses to question 1

Student/
Group Response

1/1 Yes, because the object just cannot vanish

2/1 Yes, x(t) must be defined at all instants t1 � t� t2 to reflect reality or else time was
skipped and a piece of time cannot be missing

3/1 Yes, because the object is moving in a pattern that is continuous and should be
defined at all points (student sketched graphs of continuous increasing and
decreasing functions)

4/2 No, it is not sufficient because it could have a graph like this which is not possible
(the student sketched a piecewise graph with a jump discontinuity)

5/2 No, the object cannot skip locations

6/2 No, the object position can be defined for all time instants, but the function can
have a gap which is not possible (sketched a discontinuous graph)
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In sum, these responses also illustrated that the interpretation of the formal
mathematical language needs further clarification that will better relate its meaning
with students’ prior experiences. Although the phrase function is defined is often
used in mathematics, it seemed that the students were not quite sure how to interpret
it when applied to the motion case; did it mean continuity of time or continuity of the
man’s position or both? Thus, it was further implied that differentiation between
continuity of the function domain and continuity of the function range and merging
these two into function continuity needs further elaboration. While typical context-
free questions did not exemplify this issue, the STEM context allowed for disclosing
these weaknesses.
Question 2: Does a position function have to satisfy conditions for continuity?
Support your answer.
All students (N ¼ 20, 100%) claimed that the motion function must be continuous.
However, a more detailed analysis of their supports (see Table 8.3) revealed three
different paths of their thinking. Group 1 (N ¼ 10, 50%) contained responses
(student #1–5) that targeted the idea of position function to be associated with a
continuous domain. Group 2 (N ¼ 6, 30%) contained responses (student #6–8) that
intuitively referred to function having continuous y-coordinates, and group 3 (N¼ 4,
20%) contained various answers (student #9–10).

The contexts of the students’ responses reflected the principles of continuity;
however, it seems that not all the students captured the idea that of all the conditions
must be satisfied. Thus, the fact that the object is at a specific location at each
time instant does not guarantee continuity of the position graph. Respectively being
assigned continuous position does guarantee unique time instants. Associating
continuity only with the function outputs, or only with the function inputs is not
satisfactory. While the students were more details with their analysis and strived to
capture the idea, a room for improvement exists. In sum, the challenge that was not
resolved during the lab was how to conceptualize the third condition; limt!ax að Þ
¼ $$x að Þ so that it would resonate with students’ prior experiences and make more
contextualize sense to them?

Table 8.3 Students’ responses to question 2

Student/group Response

1/1 Yes, because otherwise, it would look like they are teleporting

2/1 Yes, no gaps in time show continuity

3/1 Yes, the man cannot move without time continuing

4/1 Yes, the function must account for all time data

5/1 Yes, the function must be continuous because there are no gaps in time

6/2 Yes, since the object continuously exists, it must have an assigned position

7/2 If the graph never abruptly jumps from one value to another

8/2 Yes, because the object must always be in a position

9/3 The object never disappears, so the function must be continuous

10/3 The time is moving, so the graph must flow smoothly
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Question 3: What is the purpose of studying sided limits?
This question was more general, and it was to determine if students related the idea
of sided limits with the process of determining function limit. This question did not
refer directly to the lab context (Table 8.4).

The responses were also categorized into two different groups. Group 1 (N ¼ 15,
75%) that supported their answers using acceptable terminology and contexts
(students #1–5) and group 2 (N ¼ 5, 25%) that supported their answers using
tasks that did not explicitly reflect the purpose of studying and using sided limits
(students #6–10). Most of the students from group 1 linked sided limits with
verifying function limits at specific points. While the answers were satisfactory
and showed that the students did understand the idea of sided limits, surprisingly
not many linked the idea with construction of piecewise functions. This shows that
there is a need to extend the applications of sided limits in real contexts so that the
students consider it as a tool being used in real situations. Thus, more problems or
activities should be designed to emphasize the idea that sided limit do support
construction of algebraic functions, especially these that have different rules.

This activity showed that contextualizing the idea of sided limits is not an easy
task. Even though the students were directed toward using sided limits to construct
the piecewise functions, many (N ¼ 12, 60%) constructed the position functions
assuming it continuity, thus without formal statements supporting the continuity.
When situated in context, the idea of function continuity or function being defined
took a different more pragmatic meaning and uncovered areas that typically do not
surface in context-free problems. For example, response to question 1 showed that
the interpretations of the formal mathematical language needs be supported by real-
life applications that show how the definitions are applied practically. It seemed that
the students were also confused on what the phrase function is defined meant.

Table 8.4 Students’ responses to question 3

Student Response

1/1 Sided limits determine if there is a fixed limit by checking if both limits are the same
near a point

2/1 Sided limits allow determining if the limits at a point exist. It also provides a good
insight how the function acts near a value

3/1 To determine the y-values on both sides of x and to determine if a limit exists

4/1 To understand what the graph does at a certain point depending on which direction you
come toward the point

5/1 To write a piecewise function and check the limits

6/2 Sided limit helps us see where a function approaches a hole. We can examine limits
even one technically does not exist

7/2 To see which graph satisfies a condition that limit ¼ function value?

8/2 To know how far the function limits go. It helps you get a better understanding of the
function

9/2 To know whether the graph is continuous or if it has a hole

10/2 So that you can see any limits that may occur in the functions
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Differentiation between continuity of the function domain and continuity of the
function range needed more attention to merging these properties in a formal
definition of continuity.

Students were engaged in the activity and enjoyed working on it. While this was
not examined, an informal discussion showed that observing the simulation helped
them to learn how to differentiate between object’s path of motion and a
corresponding position-time graph. The phase that required more clarification was
the labeling of the horizontal axis on the kinematics graphs generated by the
simulation.

Students handled questions with piecewise function formulation and sketching
better than the ones who were unable to take part in the computer simulation activity.
I concluded that this lesson had a positive cognitive effect on students’ learning. The
element that was especially better handled was considering the end coordinates of a
prior piece of the function as initial for the following that students supported by
continuity. Most students who did take part in the activity considered incorrectly
y ¼ 0 as the y-intercept of the following piece of the function.

To provide a better learning experience, I suggest spending an additional instruc-
tional unit on practicing writing piecewise function given by graphs and then using
the simulated motion to practice continuity. Also, of an advantage can be splitting
the activity in two and provide more time for practicing the idea of using a formal
notation of continuity which showed a shortfall. After getting acquainted with the
formal notation, adding tasks of extracting kinematic quantities from the simulated
motion and converting them into algebraic forms is expected to enrich the formal
notation. This arrangement is recommended if students have not been exposed to
modeling activities before. The next phase of this lab would be to examine how these
students handled context-free problems on continuity.
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Chapter 9
Applying Function Transformations
to Model Dynamic Systems

Abstract Being able to transform functions due to given conditions is an essential
math skill. A preliminary survey of research on teaching transformations has shown
that majority of assessment items gravitated toward predicting new graphs due to
assigned shifts, compressions, or reflections. Real-life applications of these concepts
were rarely discussed. The activity focuses on identifying possible transformations
of trajectories of projected objects and constructing new functions. STEM context
was provided in the form of a physics simulation Projectile Motion that is available
for free at http://phet.colorado.edu/sims/projectile-motion/projectile-motion_en.
html. Parabolic trajectories were generated by varying the parameters of the object’s
initial velocity and its relative position. A group (N ¼ 25) of pre-calculus students
mathematized a parent-simulated trajectory and then used it to formulate algebraic
functions of other trajectories. It was hypothesized that situating the concept of
function transformation in an environment that related to students’ prior experience
would enhance the purpose of formulating algebraic representations and explicate on
applicability of transformation. Analysis of posttest results revealed that situating the
learning in realistic contexts brought another dimension to understanding function
transformations and infused a deeper understanding of the techniques of
constructing transformed functions.

9.1 Prior Research

A preliminary survey of research located using ERIC and Google Scholar has
revealed that the studies on functions transformations can be classified into two
general categories: as examining the effects of function manifestation using a
specific type of transformation or as examining general students’ perceptions of
the idea of transforming functions given by its symbolic form. For example,
Beaudoin and Johnston (2011) used a purposeful movement to model shapes of
transformed quadratic functions. The purposeful movement was directly related to
the content being taught, and examples of such movement having students walk
around the edge of an object to experience the concept of perimeter. Zazkis,
Liljedahl, and Gadowsky (2003) examined students’ perceptions of the horizontal

© Springer International Publishing AG, part of Springer Nature 2018
A. Sokolowski, Scientific Inquiry in Mathematics - Theory and Practice,
https://doi.org/10.1007/978-3-319-89524-6_9

101

andrzej.sokolowski@lonestar.edu

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89524-6_9&domain=pdf
http://phet.colorado.edu/sims/projectile-motion/projectile-motion_en.html
http://phet.colorado.edu/sims/projectile-motion/projectile-motion_en.html


transformations of the quadratic function, y ¼ (x � 2)2, with a reference to its parent
function, y ¼ x2, and concluded that the shift of the parabola is counterintuitive with
the students’ expectations. They recognized the students’ difficulty by contrasting
the direction of a horizontal translation with a vertical one, and suggested that there
was much more involved in visually processing the transformation of f to f(x + k)
than in processing the transformation of f to f(x) + k and suggested creating more
studies to examine students’ perceptions of function transformations. Baker,
Hemenway, and Trigueros (2000) suggested teaching horizontal transformations
by using two mental actions: the first that is performed on the function independent
variable and the second performed on the function resulting from the first action.
Others focused examining how students’ learn the idea of stretching or compressing
a function. For instance, Sever and Yerushalmy (2007) used technological tools to
support the learning of function stretching. They concluded that the technological
tools “aroused an on-line sensory stimulus through which they could act in a tangible
and concrete way on the abstract functions” (p. 1518). McClaran (2013) pointed out
that students often depend on memorized rules for transformations in order to
perform the operations and called for including more tasks supporting conceptual
understanding of transformations. Hall and Giacin (2013) researched students’
tendency to memorize the rules and concluded that when teaching function trans-
formations, instructors usually have students vary the coefficients of equations and
examine the resulting changes in the graph which unintentionally leads students to
memorizing the rules rather than understanding the algebraic underpinnings. Kimani
(2008) argued that while formulating new function students considered these entities
as possessing no algebraic relations with the parent functions. It is hypothesized that
this case reveals that students do not realize that studying transformations should
support and help with new function constructions. Lage and Gaisman (2006) found
out that students did not interiorize the effects of transformations on functions when
it was needed to think in terms of co-variation between parent functions and
transformed functions. Specifically, students had difficulties in identifying what
transformation caused a specific change in the parent function and when a transfor-
mation was specified they had problems finding its algebraic representation. Nolan
and Dixon (2016) called for more research emphasis on how students make sense of
the impact of different transformations rather than using procedures that might be
poorly understood.

While the studies examined students’ perceptions of transformations and the
effects the transformations have on parent functions, limited research was located
on how students handled constructing algebraic functions using the idea of trans-
formations in real-life applications. Thus, an ultimate question aroused if providing
students with real-life application in the form of STEM contexts will enhance the
purpose of studying function transformations and support underlying techniques of
transforming functions. This study is posited to shed more light on this interface.
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9.2 The Lab Objectives and Pedagogical Background

The primary objective examined in this chapter was to learn if students realize that
transformations help formulate algebraic representations of real-life situations. Thus,
the activity was to support the purpose of studying transformations to efficiently use
these properties to formulate algebraic representations of new situations based on
being provided a reference function and system’s changes. Referring to the physical
constraints of the situation, students were also to associate the horizontal shifts with a
change of function domain, and a vertical shift with a change of function range. A
general screenshot of the lab context is illustrated in Fig. 9.1.

The selection of this simulation is supported by its highly interactive nature that
allowed to generate different trajectories of motion, as well as to move the mecha-
nism (cannon) of generating the trajectories (see Fig. 9.4). One aspect that was
initially considered an obstacle was a lack of explicitly labeled XY axes on the
picture. This deficiency was being turned into a meaningful learning experience. In
real contexts, XY coordinates are typically not shown, and the scientists need to
establish one to be able to initiate algebraic analysis of the contexts.

The coordinate system could be established at the position of the cannon (see
Fig. 9.1), and this element can also be discussed with the students. All of the
didactical advantages of the dynamic system and their effects on supporting the
teaching of function graphs were discussed in an earlier publication (see
Sokolowski, 2013). This study examines the effects of that system features on
students’ perception and understanding of transformations.

Fig. 9.1 General view of the STEM context. Source: http://phet.colorado.edu
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9.3 Merging Mathematical Underpinnings
and the Scientific Context

This section provides a background for the teacher on how to merge the context with
the underpinnings of function transformations and to guide the students during the
activity. The STEM context can be introduced by demonstrating the paths of
projected objects depending, for instance, on the initial angle of the projection or
the magnitude of the initial speed. Some of the introductory questions can be as
follows: can the idea of function transformation be used to construct the trajectories?
If so, are there any restrictions on the parameters of the motion to enable this
process? Can the motion cases be generated randomly or should the motion be
modified with a definite order, patterns, or restrictions? How to decide what general
function form to use to formulate transformed functions? By asking such questions,
the students are to unpack what they have learned about the properties of quadratic
functions and how to relate the properties to physical changes of the observed
trajectories. After the discussion, a review of general forms of quadratic functions
can follow as suggested herein.

There are specific general forms of quadratic functions: vertex, x-intercepts, and
standard. In the vertex form (Eq. 9.1); h and q represent the coordinates of the vertex.

f xð Þ ¼ a x� hð Þ2 þ q ð9:1Þ
In the x-intercept form (Eq. 9.2); x1 and x2 represent the horizontal intercepts of

the function.

f xð Þ ¼ a x1 � xð Þ x2 � xð Þ ð9:2Þ
In the general form (Eq. 9.3); a, b, and c represent the function parameters called

also coefficients.

f xð Þ ¼ ax2 þ bxþ c ð9:3Þ
The paths of the trajectories generated by the simulation provide enough infor-

mation to use any of these forms. It could be left up to the students to decide what
form they prefer to use. However, due to the activity objectives, the vertex form was
suggested because the function formulation during the activity was to be supported
by embedding transformations. Students could be given an opportunity to use the
other forms as well and compare their results. This option is to help them to realize
the advantages of the transformed form and also its limitations.
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9.3.1 Discussing and Formulating the Parent Function

While in mathematics textbooks, parent quadratic functions are typically defined
with a vertex at the origin, thus f(x) ¼ x2, in real word, this might not be always
applicable. Indeed, even in this activity, the parent function, initiated by f(x) ¼ x2,
will be defined as a parabola concave down with the coordinates of its vertex
representing the position of the maximum altitude of the projected object (see
Fig. 9.2). This element can be brought to students’ attention, and it will serve as a
case for being more flexible with applying function transformations.

Using the trajectory (Fig. 9.2) as a parent function is further supported by a
scientific illustration of a projectile motion typically found in physics textbooks that
is generated for an angle of inclination between 0� and 90� with the initial arm of the
angle positioned on the positive x-axis. Thus, the cannon that generates the motion is
positioned on the left side, and the object is projected to the right side. It is to note
that the marks on the graph represent the position of the object after each second of
motion. This property of the motion will not be used for the graph construction, but it
will be used to verify the graph correctness.

With such arrangements, the STEM environment is ready to be mathematized.
Suppose that the projected object has an initial speed of 18 m/s, and the angle of
inclination of 75�. How to use this data to formulate necessary algebraic attributes
and formulate a symbolic representation of the path of motion? First, the units of the
independent and dependent variables of the sought function must be established. If
students use rulers to measure necessary quantities, both x and f(x) lengths will be
scaled in centimeters. If students work in the computer lab, they can use the virtual
simulated ruler and express the measurements regarding meters. Establishing a
frame of reference at the position of the cannon, the horizontal and vertical position

Fig. 9.2 An Image of the parent function. Source: http://phet.colorado.edu
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of the vertex can be found by direct measuring. The instructor can use the virtual
ruler, embedded in the simulation, to demonstrate the process of measuring the
necessary quantities. This can benefit some students who might, by mistake, think
that measuring the distance toward the horizontal axis will depict the x-coordinate of
the vertex and that measuring the distance toward the vertical axis depicts y-
coordinate. A teacher’s demo of how to take these measurements will eliminate
these mistakes.

The process of measuring the maximum altitude, thus y-coordinate of the vertex
is illustrated in Fig. 9.3. It returns the value of 15.43 m which when converting to the
vertex notation takes the form of q ¼ 15.43 m. Since the air resitence is ignored, the
parabola is symmetrical with respect to the x-coordinate of the vertex, thus measur-
ing the horiozntal intercepts of the graph and finding their mean value will compute
the x-ccordinate of the vertex that is x ¼ h ¼ 0þ16:61 m

2 ¼ 8:26 m. By inserting the
coordinates into the vertex form (see Eq. 9.2), the graph of the quadratic function
shows as f(x) ¼ a(x � 8.26)2 + 15.43. How to find the parameter a? Students with a
physics background might associate the parameter value with the object’s acceler-
ation which is not correct because the function does not show a position-time graph
but the motion trajectory. Some students will consider evaluating the tangent ratio
for the given angle of inclination. This idea is also not correct because the tangent
ratio will represent the magnitude of the initial velocity of the object which is not
visible in the algebraic model of the trajectory. One of the ways to compute the value
of the leading coefficient is to use an additional point from the trajectory and solve
the resulting equation for a. Selecting the initial coordinate of (0,0) as representing
an additional point and substituting these values into obtained earlier equation
produces 0 ¼ a(0 � 8.26)2 + 15.43. Solving the equation for a results in
a ¼ � 0.23. Thus, a complete form of the mathematical representation of the
trajectory is

Fig. 9.3 Measuring the y-coordinate of the vertex. Source: http://phet.colorado.edu

106 9 Applying Function Transformations to Model Dynamic Systems

andrzej.sokolowski@lonestar.edu

http://phet.colorado.edu


f xð Þ ¼ �0:23 x� 8:26ð Þ2 þ 15:43 ð9:4Þ
How to verify the adherence of the model to the trajectory? The verification is

necessary as it will provide means to confirm or refute the model according to the
formulated scheme of merging multidisciplinary concepts in STEM developed in
Chap. 6. Students can be asked to come up with possible means of the model
verification. Most frequently, they would suggest using a graphing calculator and
see if the graph resembles the observable path. If a graphing technology is not
available, other means must be employed. In this case, students can use, for example,
a selected x-coordinate from the graph, calculate corresponding y-coordinate using
derived model and then compare it with a respective measured value of the
coordinate.

The model (Eq. 9.4) will represent the parent function for further function
formulation due to transformations. As earlier discussed, the equation does not
represent a typical form of a parent function found in the textbooks. Considering
this case, students are to realize that in real life identifying phenomena that can be
modeled by idealistic parent functions is not always possible, yet this does not
prevent transformation from applying.

9.3.2 Formulating Algebraic Expressions for Transformed
Trajectories

While students realize that a quadratic function could be used to model the trajec-
tories, the movement of the cannon that resulted in modifications of the trajectory
provided the basis for further explorations. The simulation allowed for several
modifications of the trajectory, for example, moving the cannon upwards and
forwards, changing the initial speed and inclination of the projected objects as well
as investigating the effects of air resistance on the shape of the trajectory. All these
modifications could be embraced in transformations. I suggest exploring one mod-
ification at a time and using more complex scenarios when students get comfortable
with fundamental transformations. By establishing such sequence, the risk of
overloading students’ short-term memories will be eliminated. How to categorize
the transformations referring to physical changes in the environment? Depending on
the mode of the modifications, two general categories of investigations are
suggested: (a) investigating the effects of the change of the position of the cannon
(b) investigating the effects of change of the parameters of motion, the initial speed
of the object and its inclination. The following example discusses the formulation of
a new trajectory based on the change of the vertical and horizontal position of the
cannon (Fig. 9.4). The original trajectory, the parent function, was left intact to have
students refer to it while formulating a new function. By this, students had a chance
to compare the properties of both functions from transformation points of view and
better identify necessary information. The cannon has been moved to the right and
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upwards. This movement was activated by left clicking on the cannon and dragging
it in the desired directions.

It is to note that the original perpendicular lines in the simulation will move along
with the cannon. However, the new function will be built concerning the original
position of the cannon and initially made up XY coordinates. It is to emphasize that
the new function is formulated concerning the originally established coordinates.
This element further supports the importance of the frame of reference (coordinates)
in formulating new functions using the idea of transformations that gains its meaning
in real applications. The teacher might demonstrate—using an embedded ruler—the
process of measuring the horizontal and vertical transformation which resulted in
q¼ 12.51 m and p ¼ 21.52 m and these values constituted, respectively, the vertical
and horizontal transformations of the parent function. By referring to Eq. 9.4
and inserting the transformations, the function representing the new trajectory is
f(x) ¼ � 0.23(x � 20.77)2 + 36.96. Its correctness can be verified in a similar
manner as that of the parent function.

Attention can be given to the interpretation of the coefficient of the leading term
of quadratic function. The students will explore its behavior in conjunction with
function reflections and shifts. One of the objectives of these explorations will be to
realize that the leading coefficient does not change even though the position of the
vertex changes. The idea was brought up to students’ attention and explored
throughout the lab’s three cases: A, B, and C (see Sec. 9.4.2ts.).

Fig. 9.4 Demonstrating horizontal and vertical shifts of the trajectory. Source: http://phet.colorado.
edu
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9.3.3 Lab Logistics

When sequenced within mathematics curriculum, the activity can be considered a
summary of studying quadratic functions and transformation. The simulation was
displayed on a classroom screen. This approach is recommended because it allowed
the teacher to demonstrate the context and highlight its necessary features. Alterna-
tively, if preferred, students could work on the activity in a computer lab. As an
instrument of data gathering, a metric ruler was used. Students measured the
coordinates of selected points using provided screenshots of the trajectories and
embraced these measurements in formulating transformations. Before immersing in
the activity, students were given an opportunity to observe several simulated motion
cases and predict behaviors of the transformed representations by establishing a link
between algebraic properties of a quadratic function and the object’s path of motion.
Once the hypotheses were formulated, students observed the motion, took measure-
ments, mapped the physical properties of the trajectories with transformations and
constructed functions that depicted the new trajectories.

9.4 Lab Outline

Purpose In this lab, you will apply functions transformation to model trajectories of
a projected object. You will be asked to hypothesize answers to problems related to
general properties of the transformed functions and use suggested means to verify
your graphs. Before embracing the function constructions, answer the questions that
follow.

Problem 1 What function (exponential, linear, quadratic, etc.) can be used to
model a path of a projected object? What attribute of the projectile motion did you
consider to select the function?

Hypothesis______________________________________________________
Problem 2 Do transformations affect the new function domain and range? If yes,

in what respect?
Prediction_______________________________________________________
Problem 3 The cannon will be moved horizontally and vertically as well as there

will be variations on the initial speed and the inclinations of the projected object to
the x-axis. Referring to the chart provided below, identify possible correlated trans-
formations with the indicated motion parameters and write your predictions in the
chart.

Physical change of the system Anticipated algebraic transformation

Horizontal movement of the catapult to the right

Vertical movement of the catapult upward

Increase of the horizontal component of the velocity

Changing the angle of projection for its opposite
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9.4.1 Finding Equation of the Parent Function

Take necessary measurements and find an equation of the trajectory of the projected
object. Once you have your function formulated, measure the height and width of the
picture to establish the window/frame of the calculator so that its entire image shows
on the calculator screen. Refer to the labeled XY coordinates as a reference for taking
the measurements.

Note that the marks on the graph show the position of the projected object after
each second of motion. This property will be used later to verify the correctness of
the graphs.

Write the dimensions of the window of the graphing calculator:
xmin¼_________, xmax¼_______, ymin¼_______________, ymax¼_________________

Parent function

Parent Coordinate System

Equation of the parent function:______________________________________

• Enter the function into TI (Use a square window).
• Write the domain and range of the function considering constraints of the motion.
• Domain:____________________Range:_______________________________
• Enter the function in the graphing calculator.
• Did the derived function reflect the image of the parent function? ____If not,

correct the function.

In the examples that follow, the cannon or the parameters of projected motion will
change, and you will construct new function equations using the derived parent
function. You will also use the derived parent function as a reference function stored
in the graphing calculator to investigate the correctness of new functions. Do not
delete the parent function from the graphing calculator.
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9.4.2 Applying Transformations

Case A: The altitude of the cannon is increased.
The support of the cannon is now vertically extended, however the initial

parameters of the motion, thus the initial speed and its direction remain unchanged.
For a transformation to be applied, the frame of reference must be left intact, thus it
remains on the ground (attached to the parent function). The following snapshot
illustrates the original path and its transformed position. Do you expect that the
leading coefficient of the new function, a, will change? Support your answer.
__________________________________________________________________

________________________________________________________________

Parent function

New function

Parent Coordinate System

• Determine the type of transformation(s) of the new functions that resulted from
changing the position of the cannon.__________________________________

• Take necessary measurement(s) and using the idea of transformations, construct a
function that would reassemble the new trajectory.

• You will now verify the new function. Measure the horizontal and vertical
position of the projected object after 1 s of motion (shown by the asterisks)
using its path of motion.____________________________________________

• Use the derived function and compute the vertical position of the projected object
by entering the horizontal position after 1 s of motion evaluating the function.
________________________________________________________________

• Does the computed position correspond with the measured one?
________________________________________________________________
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• Did the domain of the new function change? ___What is the domain?
________________________________________________________________

• Did the range of the new function change?___What is the new range?
________________________________________________________________

• Was your prediction about change of function domain and range correct?
________________________________________________________________

Case B: The cannon is moved to the right now.
What transformation can be used to model the new path of motion?

__________________________________________________________________

Parent Coordinate System

Parent function New function

• Take necessary measurements and find the function equation of the new trajec-
tory. Use the earlier derived parent function and the idea of transformation.

New function:_________________________________________________
• Did the domain and the range of the new graph change with reference to the

parent graph? What are the domain and range of the new graph?
________________________________________________________________

• Did the leading coefficient (parameter a) of the new function change?
________________________________________________________________

• Did the positions of the x-intercepts of the new function change?
________________________________________________________________

• Verify the graphs by entering new function into TI. Make sure that you determine
the correct window to observe both graphs; the parent function entered earlier and
the new function.

• Do the shapes of the graphs correspond with these sketched on the diagram?
________________________________________________________________
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• Verify the graph by checking the vertical position (altitude) of the projected
object in the new scenario after 1 s of motion using the new function and then
by measuring it using a ruler. ________________________________________

• Do the heights determined by the two different means correspond?
________________________________________________________________

Comment on any discrepancies _______________________________________
Case C: The path is modified by projecting the baseball with an opposite angle,

thus by changing the angle of inclination of the cannon (angle of fire) to 110� as
measured counterclockwise from the positive side of the x-axis.

Parent Coordinate System

Parent Function
New Function

• How is the new graph compared with the parent graph?
_____________________________________________________________

• What transformation can be used to find the equation of the graph on the left side?
________________________________________________________________

• Do you expect a change of the parameter, a, in the transformed graph? ___Sup-
port your answer.__________________________________________________

• Determine the equation of the graph of the new function:
________________________________________________________________

_____________________________________________________________
• Verify the graphs by entering the new equations into TI. Does the shape of new

function reflect the expected one? ____________________If not, what has to be
changed? ________________________________________________________

Additional Questions

1. Suppose that the baseball is fired at 110� in space where there is no gravitational
field.

(a) How will the path of motion of the object look like? Support your answer.
____________________________________________________________
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(b) Write a function equation for the path of motion of the object.
____________________________________________________________

2. Were your predictions to the problems #1–2 correct?
________________________________________________________________

_____________________________________________________________
3. Do your anticipated transformations correspond with the physical changes of the

motion (Refer to Chart 1)? Comment if any discrepancies.
________________________________________________________________

_____________________________________________________________
4. Do you have any suggestions on modifying the lab so that you learn more from it?

_____________________________________________________________
_____________________________________________________________

9.5 Posttest Analysis and General Conclusions

The students did not encounter significant obstacles while completing the lab. One of
the most common questions that surfaced during the lab conduct was what coordi-
nates to use; the one associated with the parent function or the once associated with
new function while formulating algebraic equation of the transformed paths. In the
simulation, a trace of XY coordinates was moved along with the cannon, and this
created a doubt. I considered this an opportunity to enhance the notion that new
functions, when constructed by using transformations, are due to a frame of refer-
ence established while formulating the parent function. Some students noticed that
when using coordinates associated with the cannon, the new function appeared
precisely in the same form as the earlier formulated parent function. This was
especially visible when both functions were viewed on a graphing calculator. The
fact that new functions needed to be referred to the same XY coordinates as the parent
function did not surface when students worked on textbook problems. Thus, the
STEM lab helped activate this rule. On the post-lab discussion, the idea surfaced
again, and the concept of relative motion or relative position was brought to the
students’ attention. One of the questions was if formatting a new function due to
transformed coordinate system is incorrect? Depending on the purpose of formulat-
ing the function, this might be still correct and useful; however, due to practice of the
lab objectives, the new function was to be formulated using the coordinate system
that were used to formulate the parent function.

While the students correctly hypothesized the applications of quadratic functions
to describe the trajectories, only a few (N¼ 7, 28%) supported the function selection
by using specific attributes of a parabola, thus attaining an extreme value or
possessing a symmetry. Some students used their physics knowledge to justify
their answers. Selected responses about justifying the function selection are
presented in Table 9.1.
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Luck of using more precise terminology to support the function selection revealed
students weak skills of verbally describing the attributes of algebraic functions when
a context is used. While all students referred to the graph of a parabola, using the
parameters of the real context and explaining the process of mapping them with the
properties of quadratic function was not an easy task. A factor that could play a role
in formulating the answers was a level and quality of the support that was not
explicitly highlighted or taught.

The students predicted that the domain and range of the newly transformed
projectiles would change. They did show that both of these critical function attri-
butes can change if the position of the trajectory changes. Most of them stated that
the horizontal shift would affect the domain and the vertical range. A few (N ¼ 8,
32%) explicitly related vertical transformation or stretch with a change of the
function range, and a horizontal compression/stretch with the function domain,
respectively. For example “if the initial velocity is higher, the domain and range
will be higher” or more specifically “increase of horizontal component of the
velocity will increase the function domain.” Alternatively, “if the ball is thrown
higher it would affect the range, if it was thrown farther, it would affect the domain.”
Despite the fact that the general properties of the motion were discussed along with
the presentation of the simulation, students who were concurrently taking a physics
course supported their answers more accurately. The sections that follow provide a
more detailed analysis on how the students approached specific cases of
transformations.

9.5.1 Analysis of Case A

The students correctly formulated the equation of the transformed graph and major-
ity of them (N ¼ 15, 75%) predicted that the leading coefficient of the parabola
would not change (see group 2) and the rest of the students (N ¼ 10, 25%) claimed
otherwise (see group 1). Table 9.2 summarizes students’ verbal supports about a
possible change of the leading coefficient due to a vertical transformation.

Justifications about the coefficient provided more insight into how students
perceive its role in the quadratic function appearance. It was interesting to note

Table 9.1 Students’ justifications of using quadratic functions to model path of projected objects

Student Response

1 The object will go down due to gravity

2 The path looks like a parabola

3 The projected objects follow a quadratic path

4 The speed of the object is decreasing, then increasing

5 The object moves forward and also in the vertical direction that creates the parabola

6 A quadratic function will be used based on the arc of the graph

7 The parabola resembles the path of quadratic function
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that these students who claimed that “a” will change did not refer to the physical
properties of the context and its possible influence. The coefficient “a” does not
explicitly manifest on the graph unlike the coordinates of the vertex. Discussing its
value due to only transformations seems incomplete and does not produce enough
prompts for the students to remember the properties. Students who used the STEM
contexts were more successful in justifying algebraic properties of the graph. Should
such analyses dominate the study of function properties? Examining more examples
of similar teaching effects would help in answering such question. Some of the
students thought that the new function is wider despite stating that the leading
coefficient does not change. In fact, when projected from a higher altitude, the
trajectory appeared wider due to the object being longer in motion. This revealed
that visual appearance of the new function while displayed in a parent function
coordinate system might dilute the function properties. Thus, taking into consider-
ation physical changes of the system are stronger supports for describing embedded
transformations.

9.5.2 Analysis of Case B

All students (N ¼ 25, 100%) correctly concluded that the function domain will
change and that the range will remain unchanged when the function is shifted to the
right. They also agreed this time that the leading coefficient of the parabola would
not change. While in Case A, all students correctly associated the sign of the
transformation with the direction of movement, in Case B some students (N ¼ 4,
16%) associated the right shift of the parabola with a negative horizontal transfor-
mation although they correctly identified its numerical value and found a correct
function representation. This mistake can steam from the counterintuitive the inter-
pretation of f that is to be generated by f(x� h) noted also by Zazkis et al. (2003). If a
new function is generated by the x � h, then equating this expression to zero and
solving for x will provide general means of concluding the correct sign of the

Table 9.2 Students’ justifications of the leading coefficient due to a vertical transformation

Student/group Response

1/1 Yes, because the altitude can affect coefficient

2/1 Yes, because the graphs are different

3/1 Yes, because the parabola got bigger

4/1 Yes, because the other numbers will also change

5/1 Yes, because the parabola is stretched

6/2 No, the vertex is the only thing that changes

7/2 No, because the angle of the trajectory does not change

8/2 No, because the inclination and the initial speed remain the same

9/2 No, the graph is not being stretched

10/2 No, the only position of the vertex changes
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transformation, that is x ¼ h. Thus, if the transformation is to the right, e.g., 3 units,
then h ¼ 3, which leads to x � 3 and f(x � 3) as an expression for the general form.
Verifying the position of the vertex would also help with concluding the final
function form.

9.5.3 Analysis of Case C

While students correctly described the physical changes of the graph, reflection
about the y-axis, many (N ¼ 20, 80%) claimed that the resulting function equation
would differ by the sign of the horizontal transformation. More specifically, if f
(x) ¼ � 0.58(x � 2.1)2 + 2.9 represented the parent function, the students claimed
that the reflected function will have the form of f(x)¼ � 0.58(x + 2.1)2 + 2.9. While
the function resembled the new graph due to its symmetry, the algebraic form did not
follow the properties of reflection about the y-axis that was supposed to be f
(x) ¼ � 0.58(�x � 2.1)2 + 2.9. Both forms are equivalent and a simple factoring
process f(x) ¼ � 0.58[(�1)2(x + 2.1)]2 + 2.9 ¼ �0.58(x + 2.1)2 + 2.9 proves the
equivalency. Some students who attempted to apply reflection did not realize that
considering the first operation is replacing x by �x in the new function. Evaluating
this case provided prompts for redesigning the structure of this part so that a
horizontal transformation cannot suffice the reflection. There was additional ques-
tion that required the students use their scientific knowledge and construct a function
of a path of motion assuming that no external gravitational field was present.
Majority of the students predicted that the path will be linear (N ¼ 17, 68%);
however, the students falsely assumed that the slope of the function will be �0.58
thus equal to leading coefficient of the earlier derived quadratic function. The
students did not link the angle of inclination of the path of motion with that tangent
ratio representing the slope of the path. The students had not explored the linkage
between the angle of inclination and the slope of a respective linear function. This
idea was brought up to their attention while the angle inclination and tangent ratio
was introduced in the chapter of trigonometry.

This study was undertaken to support the idea that when placed in a STEM
environment, function transformations become more tangible and offer opportuni-
ties for exploring more deeply their properties and uncover their limitations. Indeed,
creating similar labs with other contexts will broaden the idea and have students
consider transformations as useful tools to mathematize real phenomena.
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Chapter 10
Investigating Function Extreme Value: Case
of Optimization

Abstract Optimization is a central process in engineering designs. Its core idea is
rooted in applying mathematics and calculus techniques to finding a maximum or
minimum value of a function, often of several variables, subject to a set of con-
straints. This study investigated how calculus students formulated and analyzed
functions that led them to find dimensions of a rectangle that produced a maximum
area enclosed by a string of a fixed length. A group of 23 high school calculus
students was immersed in an activity that involved hypothesizing possible outputs,
direct measurements, data collecting, model formulating, and optimizing the model
values. While typical textbook problems on optimization focus students’ attention on
determining unique dimensions that maximize an enclosed area, this activity
extended the exploratory part and underpinned not only the behavior of the function
of interest but also the behavior of the constraint functions. This phase helped to
disclose potential effects of the constraint functions on absolute maximum or
minimum. Posttest analysis revealed that STEM activity not only deepened and
helped understanding of underlying optimization processes but also challenged
students’ mathematical reasoning skills regarded the interpretation of the behavior
of the derivative function.

10.1 Prior Research

Optimization is an abstraction of the problem of making the best possible choice
from a set of candidate choice (Boyd & Vandenberghe, 2009). It consists of
maximizing or minimizing a function value by systematically choosing input values
from the set of the allowable domain that corresponds to a maximum or minimum
function outputs. Optimization is a field of applied mathematics whose principles
and methods are used to solve quantitative problems in disciplines including biol-
ogy, engineering, physics, and economics. Due to its complexity, optimization is
difficult for students. The most common difficulties reported by research are (a) a
lack of demonstrating mathematical reasoning skills in understanding the mode of
variable change; (b) the inability to use appropriate representation; and (c) overusing
procedural approach rather than conceptual (Yang, 2014, July). More specifically,
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Troxell (2002) pointed out certain pitfalls on using technology while teaching
optimization and suggested relying more on analysis and validation while conclud-
ing a maximum or minimum function value. Poon and Wong (2011) proposed
adoption of Polya’s problem-solving model to investigate and solve optimization
problems in geometry. Schuster (2004) discussed the inclusion of statistical analysis
and highlighted the role of combinatorial optimization as a possible area of studies to
improve students’ optimization skills. Algorithms for optimizing areas enclosed by a
fixed length perimeter was investigated by Brijlall and Ndlovu (2013) who con-
cluded that students use “isolated facts and procedures” (p. 16) to optimize problems
and linked these shortfalls with traditional ways of teaching these processes.
Greenwell (1998) proposed a method that focused students’ attention on examining
constraints of optimization problems and the geometry before immersing in a formal
procedure. Malaspina and Font (2010) examined the role of intuition and rigor in the
solving optimization problems and found out that intuition helped formulate the
solution process. While analyzing rigor in the solutions, they noticed that students
lack justifying skills that would support the optimum solution. Ledesma (2011)
investigated the process of identifying a solid with a maximum volume that was
built by cutting squares of equal heights from the corners of a piece of cardboard.
She concluded that calculus students had difficulties understanding the underlying
algebraic algorithm applied to finding a height that produced a maximum volume
and suggested using simulations to help students understand the algorithms. Lowther
(1999) performed a similar activity with an intent to have students apply a strict
algebraic approach. The students, however, chose a method of trial and error. Thus,
they missed the opportunity to investigate applications of algebraic functions to find
the required volume. The author concluded that “All my students found the volume
of their boxes by measuring the other two dimensions and multiplying” (p. 764).

A calculus course encompasses many concepts related to students’ prior mathe-
matical background. Thus, the difficulties with optimization might be accounted not
only for a high complexity of the optimization problems but also for not providing
students with opportunities to merge mathematical ideas in real contexts in prior
mathematics courses. The preliminary survey supported the efforts to continue the
research on improving the understanding of optimization and students’ algebraic
techniques. While the STEM context of this study is simple, it will offer students
phases of scientific explorations to merge scientific inquiry with mathematical reason-
ing as it pertains to optimization. With support of the general STEM integrated
theoretical framework (Chap. 6, Fig. 6.1), this study was posited to make a transition
from observation to mathematization more convincible and more explicit to students.

10.2 Theoretical Framework

This study is an extension of prior research on optimization (Sokolowski, 2015a,
2015b) that was designed for pre-calculus students. While the primary goal of the
prior study was to find out if a real context can be used to eliminate students’
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misconceptions related to optimization, the current one was designed for calculus
students and focused on exploring and investigating the behavior of derivatives and
their effects on finding the absolute maximum value of the function.

The group of calculus students was not taught optimization problems in their
prior mathematics education. Therefore, some elements of the lab activated students’
general mathematical reasoning skills by inviting them to formulate hypotheses to
the stated problems. A necessary students’ calculus background included the tech-
niques of differentiation as well as the principles of the first derivative test to find a
maximum function value. Consideration was given to determine whether to place
this activity prior a formal introduction to optimization or afterward. While it seemed
that either sequence would benefit the learner, this activity was conducted before
introducing a formal process of optimization. This arrangement was supposed to
reveal the technique of formulating both constraint and the primary functions before
delving deeper into the algebraic techniques of optimizing.

Typical problems of optimization found either in algebra or calculus textbooks
focus students’ attention on finding unique solutions due to formulated algebraic
representation that maximizes the scenario (e.g., Stewart, 2007; Sullivan & Sullivan,
III 2009). The proposed STEM activity was to extend the exploratory part of the
process by including the phase of gathering data, formulating and analyzing a
perimeter function, formulating area function based on gathered data, and then
finding an optimum solution. Students were invited to hypothesize qualitative and
quantitative outputs of the lab and verify their predictions. In the quantitative part,
they predicted a numerical output of their investigations, and in the qualitative part,
they predicted a general output of their investigations using their reasoning skills.
The real context was provided by a string, board, and pins that were used to
formulate various rectangles. Students used three different pathways of finding an
optimum solution: manual, graphical, and algebraic including use of a graphing
calculator.

10.3 Context Development

In addition to having the students explore optimization processes, this activity was to
serve as a bridge to similar textbook problems. To allow the link, the following
problem, from a calculus textbook (Stewart, 2007, p. 311) was used “Find the
dimensions of a rectangle with a perimeter of 100 m whose area is as large as
possible,” The length of the string was changed to 70 cm due to restricted dimen-
sions of the board. Optimization usually involves formulating more than one func-
tion (called constraint functions) that when superimposed generated boundaries on
how the function to be optimized behave which in this activity were a perimeter and
area functions. Typical support to formulate two (or more than two) function
equations is rooted in need to eliminate variables. While from algebra point of
view, informing the students about such need can be sufficient, the activity was
posited to extend the support to explore not only the nature of the perimeter function
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but also its rate of change and link these findings with investigating the area function.
Thus, on the one hand, the students were to realize that the perimeter is constant for
any rectangle, P ¼ 70 cm, and the rate of change of perimeter, P

0 ¼ 0. On the other
hand, they were to discover that the constant value of the rate can be used to
determine how one side of the rectangle changes when simultaneously another
does. This phase was to enhance contextual meanings of the variables and their
rates. It was also to enhance students’ reasoning about the intermediate phases of
optimization and highlight the fact that generated rectangles lengths and widths were
changing due to a certain pattern that affected the successive phase of finding the
area function.

The didactical challenge was how to conceptually link the idea of formulating an
expression for the perimeter of the rectangles formulating a function for the area of
the rectangles. The link that I have suggested invited the students to establish the
width of the rectangle as x, and h(x) as the height and formulating 70 ¼ 2x + 2h(x).
From there, the students could investigate the behavior of h(x) ¼ 35 � x. In this
stage, the students merged the idea of perimeter as a formula with a perimeter as a
function. Students were to realize a strict dependence of the change of h(x) due to
change of x which apparently led to conclude that the maximum area results in a
square. The students took the derivative of h(x) and interpreted its meaning in the lab
context which occurred not to be that obvious. Taking the derivative of the constraint
function is not typically practiced while solving optimization problems; it was seen
that this task would not only extend applications of the derivative, but also provide
insight about how the variables of interest behave. Students made a preliminary
graph of the height function and stated its domain and range. Students then generated
a table of values of width versus areas, sketched a corresponding graph (a sample is
provided in Fig. 10.1) and found its algebraic equation.

To establish a stronger link between the activity and the problem-solving, the
students were suggested to use the x intercept form of the quadratic function, thus A
(x) ¼ a(x � x1)(x � x2). After substituting the x-intercepts referring to the Fig. 10.1,
they obtained A(x) ¼ a(x)(x � 36) whose one factor contained the earlier formulated
height function. They used an additional point from the graph and computed the
leading coefficient a of the parabola. They used the concept of the derivative again to
identify the value of x that produced the maximum area. It was surprising for
students to discover that the value of the coefficient was about �1.Due to that the
area function took the form ofA(x)¼ � 1(x)(x� 36) and then A(x)¼ x(36� x) which
linked the form with traditional setup of such problems found in calculus textbooks.
Students used also a graphing technology to find the best fit curve for the data and
then analyzed it. A diversity of routes taken in this lab summarized in Fig. 10.2 were
to highlight correlations between all the representations and enhance the algebraic
reasoning of these processes.
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10.4 Setup, Materials, and Lab Logistics

A science lab was designated for the lab conduct because the students could be
seated in groups, which nurtured ideas exchange. This lab could also be conducted in
a regular math classroom. There were five groups of four students and one group of
three students. The activity lasted for one class period (55 min) that allowed for
taking data, generating the graph and initiating the analysis. Students who did not
finish the lab in the class took it as homework. It is suggested designating about
90 min in class for the lab completion. Each group was given a string of lengths
between 70 cm and 80 cm, a Styrofoam board of 40 cm by 60 cm, four pins, a metric
ruler, and a set of French curves to allow sketching the best fit curve.
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Fig. 10.2 Diversity of representations used to formulate the area function
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The instructor initiated the activity by explaining that the students would inves-
tigate the area enclosed by a string of a fixed length. The instructor demonstrated
various rectangular shapes generated by changing the sides of the rectangles by
keeping the string length constant. He explained that the initial shape of the polygon
is already prearranged for the student and then he turned the students’ attention to the
problems listed in the activity and invited them to hypothesize the answers.
Although the students took data in groups, each student was responsible for formu-
lating hypotheses and answering the lab questions individually.

10.5 Lab Outline

Objective During this lab, you will explore changes of the dimensions of rectangles
with a fixed perimeter and explore the effects of that processes on the area enclosed.

Materials String, board, pins, a ruler, French curves, TI-84.
Problem 1 Suppose that you are given a string of a fixed length. If the string is to

form rectangles, how will the height of the rectangles change if the width increases
by 1 cm?

Hypothesis ______________________________________________________
Problem 2 What will the derivative of the perimeter function represent? What is

the expected algebraic form of the derivative?
Hypothesis ______________________________________________________
Problem 3 Will the area be enclosed by a string of a fixed length change if the

dimensions of the rectangle change? Support your justification.
Hypothesis ______________________________________________________
Problem 4 Suppose that the area is labeled on the vertical axis and the width on

the horizontal what type of graph will be generated if respective data is plotted?
Hypothesis ______________________________________________________

10.5.1 Lab Procedure

You will take the data using the given Styrofoam board, pins, and the string. Note
that the first setup to take data is prearranged (see the diagrams below). You need to
measure the heights of the resulting figures, compute the areas, if possible, and
record these in Table 10.1.

Table 10.1 Generated data for the lab

Perimeter (cm)

Width (x) of the rectangle (cm) 0 5 10 15 18 20 25 30 35

Height (h) of the rectangle (cm)

Area (A) of the rectangle (cm2)
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• Place another pin at a distance of 5 cm from the existing one (see the next
diagram). Use another two pins and wrap up the string around to form a
rectangular polygon. Measure the height and find the area.

5cm

• Change the length of the base of the rectangular polygon as indicated in
Table 10.1 and repeat the steps until the rectangle reaches the width of 35 cm.

• Add another measurement if the string is longer than 70 cm.
• Record the perimeter of each figure (one more cell is provided for an additional

dataset if needed).

10.5.2 Data Analysis

Part 1: Analysis of the Constraint Function
• Was the perimeter of the rectangles constant as you modified the rectangles’

dimensions?
• What is the value of the perimeter and its rate of change? __________________
• The heights of the rectangles were changing by a specific rule depending on the

value of x. Using the constant value for the perimeter, 70 cm, x for thewidth, and h(x)
for the height, construct a perimeter function: _____________________________

• Solve the expression for h(x)_________________________________________

• Take the derivative of h(x); dh xð Þ
dx ¼____________________________________

• What is the interpretation of the derivate? ______________________________
• Make a preliminary sketch of h(x) and identify its domain and range referring to

constraints of the lab.
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• Were your hypotheses to Problem 1 and 2 correct? ______________________

Part 2: Generating and Analyzing the Area Function
• Is the area constant as the width of the rectangle increases? ________________
• Was your hypothesis to Problem 3 correct? _____________________________
• Are there some specific dimensions that produce a maximum area enclosed? ____
• On the grid provided below, plot Area versus width. Label the area of the

rectangles on the vertical axis and the width on the horizontal axis. Establish a
scale so that the graph fills in the entire grid. Use French curves to draw a smooth
graph.

• You will find an algebraic equation of the area function using A(x) ¼ a(x � x1)
(x � x2) where x is a general variable representing the width of the areas and x1

126 10 Investigating Function Extreme Value: Case of Optimization

andrzej.sokolowski@lonestar.edu



and x2 represent the horizontal intercepts of the parabola. Use an additional point
from the graph to calculate the value of the parameter a and then formulate the
area function.

• A(x) ¼__________________________________________________________
• Find an expression for the rate of change of the area with respect to the width and

sketch it below. What are the units of the derivative? What is physical interpre-
tation of the units?

• Use the first derivative test to determine the value of x that produces a maximum
area of the rectangle. ______________________________________________

• Do the signs of the derivative correspond with the behavior of the area function as
seen through calculus methods? Support your answer. ____________________

• Does the computed width correspond with the one hypothesized using the table of
values and the graph? ______________________________________________

• What is the maximum area? _________________________________________

10.5.3 Model Verification Using Graphing Technology

During this part, you will generate the function equation using the data from
Table 9.1 and a graphing technology. How to enter the function and find its algebraic
expression?

• Press STAT, enter the length in the column under L1, and the calculate area under
L2.

• Quit, press STAT again, and navigate to CALC (top middle function in
the menu).

• Press CALC, examine possible regression curves, and select the one that you
anticipate will best follow the generated graph properties.

• Press enter.
• Retrieve the algebraic equation of the curve. _____________________________
• Take the derivative of the function. ___________________________________
• Does the maximum value of the area correspond with the one computed using the

earlier derived area function by hand? _________________________________

10.5 Lab Outline 127

andrzej.sokolowski@lonestar.edu

https://doi.org/10.1007/978-3-319-89524-6_9#Table1


10.5.4 Merging the Lab Outputs with Techniques
for Optimization

In the textbook problems on optimization, constructing area or volume function by
taking data and sketching graph is not often suggested to use. Therefore, more
general techniques of solving optimization problems were developed. The questions
that follow attempt to etablish the link. The value of the parameter a should be close
to �1 and thus the area function should be in the form A(x) ¼ � 1(x)(x � 36) or A
(x) ¼ (x)(36 � x).

• Do you agree that the area function can be constructed using a general formula for
area of a rectangle that is A ¼ (w)(l )?__________________________________

• If you choose w as a width, what is the expression for l? __________________
• What are the differences and similarities between A(x) ¼ (x)h(x), A(x) ¼ (x)

(36 � x) and A ¼ (w)(l )?____________________________________________

Provide lab reflections and possible suggestions for its improvement:
________________________________________________________________
________________________________________________________________
________________________________________________________________

10.6 General Discussion

All students completed the lab. They followed suggested paths of analysis: the table
of values, the graph, and the analysis of the first derivative test and concluded that
the maximum area was produced when the width of the rectangle was about 17 cm.
The virtue of completing the lab and finding rectangle dimensions that maximized
the enclosed area could support the premise that merging systematic scientific
methods with algebraic techniques can serve as a learning tool. This lab also helped
reveal several factors that pertained to derivatives that are typically not activated
while working on textbook problems. These factors were visible when (a) students
converted the perimeter formula to a function and were asked for an interpretation of
the derivative and (b) when they used the derivative to analyze the area function.
Both these factors did not affect the final answer. However, discussing these phases
with students after the lab supported the hypothesis that extending the inquiry of the
activity and immersing the students in a deeper algebraic reasoning helped to correct
certain misconceptions. Consequently, it also solidified students general disposition
about their readiness to apply calculus tools in real contexts.
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10.6.1 Formulas Versus Functions

One of the factors that the students did not feel comfortable with was the phase of
converting a perimeter formula to a function. While they correctly predicted that the
rate of change of height decreases while the rate of width increases, many (N ¼ 10,
43%) did not recognize that the rate of perimeter function should be zero due to the
perimeter of all the rectangles being constant. This finding prompted to contrast the
concept of formula and function with the students after the lab. If P ¼ 2w + 2l is
given, students typically do not associate this expression with an algebraic function
because the purpose of using it is to compute perimeter for unique sides values rather
than using it to function analysis. Should calculus students be fluent in recognizing
the differences between function and formula and be able to make transitions
between these two fundamental algebraic representations? Should there be desig-
nated instructional units in mathematics that would explicate on the differences and
provide means of transitioning between formulas and functions? The group of
students was also asked to contrast formula for an area of a rectangle with the
derived function from that data. Their responses lacked details and a clear under-
standing of the close linkage between these representations which suggest to empha-
sis more the similarities and differences between formulas and areas in school
practice. While the claim can be premature, further research in the domain of
formulas versus function not only as it applies in math but also in science seems
as a natural consequence of the lab outputs.

10.6.2 Sketching and Interpreting Rate of Change

The other aspect that showed up during the analysis was the interpretation of the
rates, sketching the derivative of the area, and using the first derivative test to
identify the dimensions of the maximum area. The students used the first derivative
test to solve real-life textbook problems prior the optimization lab. Thus, they were
familiar with its application. During the lab, many of them (N ¼ 16, 70%) did not
sketch the derivative of the area on its entire domain but only where the area had a
positive rate thus 0 � x � 18 cm or 0 � x � 36 cm. I implied that they did not feel
comfortable to admit that rate of change of a real quantity can be negative. A post-lab
discussion had supported this claim. Revealing this shortfall signified high educa-
tional values of real STEM contexts. It also illustrated a barrier that perhaps exists
between calculus tools and their real applications amplified a need for designing
more labs where the students would experience direct applications of calculus in real
life. Such limitations did not surface in students’ work when analysis of pure
functions was concerned and did not surface current research on understanding the
concepts of calculus. It seems that interpreting just a negative slope is not sufficient,
students need to be given real contexts when negative rates will result from the
analysis. Another element that showed up during the lab analysis was associated
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with handling of the physical units of the derivative. In science, simplifications of
units is a common practice. For example, if using x ¼ vt students are required to
prove by simplifying the units of velocity and time that the unit of the distance
denoted by x is meter x½ � ¼ m

s � s ¼ m. Yet, it occurred that simplifying the units of
the derivative might lead to units that are difficult to interpret in real contexts. For
example, the students were to state and interpret the meaning of the derivative of the
area function with respect to width. Several of them (N ¼ 10, 43%) stated that the
unit dA

dx

� �¼ cm2

cm ¼ cm and claimed that the unit represents “change in area in terms of
width” which is correct however the unit of centimeters is misleading. Retaining the
final units as dA

dx

� � ¼ cm2

cm would provide better means for a more realistic interpre-
tation. In a similar fashion, many of the students (N ¼ 20, 87%) reduced the units of
meters in dh xð Þ

dx ¼ �m
m ¼ �1 and were unable to properly interpret the result in that

context. These observations prompted me to address these issues and point out that
while deriving the units of the derivative, simplification of the units of the compo-
nent quantities is not recommended, because this process might scrap the rate from
its important contextual meaning and lead to units that are difficult to interpret.

10.6.3 Transitioning to Textbook Problems

The STEM lab was also to serve as a reference to solve textbooks problems on
optimization. Thus, while introducing other types of problems on optimization, I
referred to the activity emphasizing that the function be optimized usually included a
constrained function that stemmed from the conditions embedded in the problem.
Inducing and maintaining parallelism between the lab and the textbook problems
was well received by the students. When quizzed, the students handled very well
similar area/perimeter problems. However, they were not equally successful on
problems, for example, requiring finding dimensions of a rectangle inscribed under
a graph that would result in a maximum area enclosed. This context would need
perhaps another real experience to align its technique of solving with students’ prior
experiences.

10.6.4 General Conclusions

Foremost, it is seen that the students should be given opportunities to explore similar
contexts, e.g., areas and perimeter in their earlier math classes, so that when they
reach calculus, the exploratory analysis can focus more on using calculus tools. This
shift would also allow for conducting more activities in different contexts during the
course conduct and exemplify general patterns of the techniques. It is also seen that
placing more attention to analyzing the rate of change of the constraint functions
would deepen the analysis because it uncovered the relations between their rates of
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change, thus shed for light into possible dimensions of the quantity of interest. At
last, this study also supported the conclusion reached by other researchers (e.g.,
Ledesma, 2011) that the source of difficulties in solving calculus problems might not
necessarily be rooted in the mathematization of the processes, but in the difficulties
of understanding the underlying mechanisms of the mathematical principles and
apparatus applied.

It seems that STEM contexts display a great potential to help the learners to
understand the mechanisms.
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Deductive reasoning, 17

E
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applications, 65
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constant ratio, 70
data analysis, 73–75
dimensionless quantity ratio, 69
functions and rates, 66
graph and table of values, 69, 70
graphing calculator, 66
high school mathematics courses, 66
iterative multiplication/division

processes, 67
lab logistics, 71–72
lab outline, 72–77
lab procedure, 73
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physical principles, 66
physics component integration, 76–77
pretest findings analysis, 67–68
rates and ratios difference, 69
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word problems, 67
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First derivative test, 121, 127–129
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Function continuity (cont.)
position-time graph and object’s path

of motion, 90
preliminary survey, calculus textbooks, 83
research findings, 84–85
second segment analysis, 88–89
simulation, 90
start-up screen, 90
verification, 89
warrant function graphs adherence, 83

Function transformations
algebraic underpinnings, 102
applying, 111–114
categories, 101
lab logistics, 109
lab outline, 109–114
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context, 104–109
mental actions, 102
parent functions, 102, 105–107
purposeful movement, 101
real-life applications, 102
STEM context, 103
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G
Generalization tasks, 58–59

H
Human memory capacity, 25–26
Hypothesis formulation, 57–58

I
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Inquiry in STEM
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students’ creativity and invention, 55
symbolic representations, 53
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