
1334

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 3.12
LOGIC–Minimiser:

A Software Tool to Enhance Teaching
and Learning Minimization of

Boolean Expressions

Nurul I. Sarkar
Auckland University of Technology, New Zealand

Khaleel I. Petrus
University of Southern Queensland, Australia

Abstract

Boolean algebra, minimization of Boolean expres-
sions, and logic gates are often included as subjects
in electronics, computer science, information
technology, and engineering courses as computer
hardware and digital systems are a fundamental
component of IT systems today. We believe that
students learn minimization of Boolean expres-
sions better if they are given interactive practi-
cal learning activities that illustrate theoretical
concepts. This chapter describes the development
and use of a software tool (named LOGIC-Mini-
miser) as an aid to enhance teaching and learning
minimization of Boolean expressions.

Learning Objectives

After completing this chapter, you will be able
to:

•	 List and describe three main features of
LOGIC-Minimiser.

•	 Explain how LOGIC-Minimiser can be
used in the classroom to enhance teaching
and learning Boolean expression minimiza-
tion.

•	 Describe the Q-M algorithm for the mini-
mization of Boolean expressions.

•	 Define the following key terms: Boolean
expression, SOP, logic gate, logic minimiza-
tion, and K-maps.

 1335

LOGIC–Minimiser

Introduction

It is often difficult to motivate students to learn
minimization of Boolean expressions because
students find the subject rather abstract and techni-
cal. A software tool (named LOGIC-Minimiser)
has been developed that gives students a hands-
on learning experience in minimizing Boolean
expressions. LOGIC-Minimiser was developed
in C language under MS Windows and is suit-
able for classroom use in introductory Boolean
algebra courses. Based on user input (i.e., logic
expression), the system displays the sum of product
(SOP) functions as well as minimized logic gate
diagrams. Test results demonstrate the successful
implementation of LOGIC-Minimiser, and the
simplicity of the user interface makes it a useful
teaching and learning tool for both students and
instructors.

This chapter describes the development of
LOGIC-Minimiser and its usefulness as an aid to
teaching and learning minimization of Boolean
expressions. The chapter concludes with a discus-
sion of the strengths and weaknesses of LOGIC-
Minimiser and its future development.

Background and Motivation

Boolean algebra, minimization of Boolean expres-
sions, and logic gates are essential concepts in-
cluded in electronics, computer science, informa-
tion technology, and engineering. These concepts
play a fundamental role in computer hardware
and digital systems design. We believe that it is
extremely important to incorporate practical dem-
onstrations into these courses to illustrate theoreti-
cal concepts and therefore provide an opportunity
for hands-on experience. These demonstrations
will significantly enhance student learning about
Boolean expression minimization.

In fact, very little material has been designed
and made available for public access to supplement
the teaching of Boolean expression minimization.

This is revealed by searches of the Computer
Science Teaching Center Web site (http://www.
cstc.org/) and the SIGCSE Education Links page
(http://sigcse.org/topics/) on the Special Interest
Group on Computer Science Education Web site.
We strongly believe, as do many others (Bem &
Petelczyc, 2003; Hacker & Sitte, 2004; Ibbett,
2002; Leva, 2003; Shelburne, 2003; Williams,
Klenke, & Aylor, 2003), that students learn more
effectively from courses that provide for active
involvement in hands-on learning activities.

Boolean expression minimization is one of the
most challenging subjects to teach and learn in a
meaningful way because students find the topic
full of technical jargon, dry in delivery, and quite
boring. Sarkar, Petrus, and Hossain (2001) have
developed LOGIC-Minimiser in C under MS
Windows to give students an interactive, hands-on
learning experience in minimization of Boolean
expressions. LOGIC-Minimiser can be used by
a teacher in the classroom as a demonstration to
enhance the traditional lecture environment at
an introductory level. Also, students can use the
system in completing tutorials on Boolean expres-
sion minimization and to verify (interactively and
visually) the results of in-class tasks and exercises
on Boolean expression minimization. LOGIC-Mi-
nimiser can be used either in the classroom or at
home as an aid to enhance teaching and learning
Boolean expression minimization.

Minimization of Boolean expressions using
traditional methods such as truth tables, Boolean
algebra, and K-maps can be very tedious and is not
well-suited for expressions involving more than
six variables. A more useful approach, the Quine-
McCluskey (Q-M) algorithm, also called tabular
method, is an attractive solution for minimizing
complex Boolean expressions involving variables
of any length. Moreover, the algorithm lends itself
to a fast and easy machine implementation.

The remainder of the chapter is organized as
follows. First we examine various open source
software tools suitable for logic-gate design and
minimization. We then describe LOGIC-Mini-

1336

LOGIC–Minimiser

miser in teaching and learning contexts. Then,
software implementation of LOGIC-Minimiser
is discussed, and the educational benefits of the
software are highlighted. An example of a class-
room plan and LOGIC-Minimiser in practice is
discussed. Test results which verify the success-
ful implementation of LOGIC-Minimiser are
presented, followed by a conclusion and future
research directions.

Related Work

A detailed discussion of digital systems design and
minimization of Boolean expressions in general
can be found in Green (1985), Greenfield (1977),
Mano (1984), and Tanenbaum (1999). The Quine-
McCluskey algorithm is described extensively in
the computer hardware and digital logic design
literature (Carothers, 2003; Costa, 2004; Hideout,
2003; Hintz, 2003). Grimsey (2000) examined
the strengths and weaknesses of various methods
of minimizing Boolean expressions, including
truth tables, Boolean algebra, and Karnaugh
maps (K-maps).

A variety of open source and commercial
software tools exist for modelling and simulation
of logic circuit design and Boolean expression
minimization. These powerful tools can have
steep learning curves; while they may be good
for doing in-depth performance modelling of
computer hardware and logic design, they often
simulate a hardware environment in far more
detail than is necessary for a simple introduction
to the subject.

Lockwood (2003) presented a program for the
implementation of the Q-M algorithm. However,
it is of limited use as a teaching and learning
tool because of its text-based interface that is not
user-friendly. Leathrum (2003) described another
text-based menu-driven program for the Q-M
algorithm, but the user interface is rather difficult
to use. Costa (2004) developed a package called
“bfunc” for Boolean functions minimization. It

is an MS-DOS-based program and is considered
an alternative to the K-map method of simplify-
ing Boolean functions. Burch (2002) proposed a
tool named Logisim, a graphical system for logic
circuit design and simulation which is suitable
for classroom use. Logisim is a Java applica-
tion and can be run on both Windows and Unix
workstations. While Logisim is an excellent tool
for building a variety of complex combinational
circuits, but it is not suitable for logic gate mini-
mization. Other tools such as Digital Works 3.0
(2001) and LogicWorks (1999) are similar to
Logisim in that they provide a graphical toolbox
interface for composing and simulating logic
circuits. LOGIC-Minimiser, which we describe
in the next section, has its own unique features,
including simplicity and ease of use either in the
classroom or at home, to enhance teaching and
learning Boolean expression minimization.

Architecture of
LOGIC-Minimiser

Figure 1 shows the structured diagram of LOGIC-
Minimiser. The main features of LOGIC-Mini-
miser are briefly described.

•	 New: This feature allows users to enter a
new set of variables for minimization.

•	 Min/Out: This feature allows users to view
a minimized sum of product (SOP) expres-
sion and logic circuit diagram.

•	 Quit: This feature allows users to exit from
the program at any time.

The following three features have not been
implemented yet and are considered as future
work.

•	 Load: This feature will allow users to view
existing data (i.e., minimized minterms) for
further analysis and modifications.

 1337

LOGIC–Minimiser

•	 Save: This feature will allow users to store
outputs on disk for later use and further
modifications.

•	 Help: This feature will provide help on vari-
ous topic related to minimization of Boolean
expressions.

Software Implementation

The Q-M algorithm is used to reduce a Boolean
expression to its simplest form. It is designed
particularly for use with problems containing six
variables or more but can be used equally well for
a smaller number of variables. The algorithm is
based on repeated applications of the distributed
law and the fact that XOR (NOT X) is always
true. The Q-M method is a systematic way of
selecting the pairs to be used for simplification.
The main steps in the Q-M algorithm are sum-
marized below:

1.	 Representing all addends as sums of mint-
erms

2.	 Grouping the minterms that have the same
number of ones

3.	 Merging the terms that differ in only one
bit (this is done in several steps)

4.	 In order to find the irredundant cover we
use the min-cover algorithm:
a.	 Find all distinct minterms.
b.	 Find all essential prime implicants.
c.	 Find all the minterms that are covered

by the essential prime implicants.
d.	 Remove all minterms and prime im-

plicants found in (a)-(c).
e.	 Choose that prime implicant that covers

most of the remaining minterms.
f.	 Repeat (d) until all minterms have been

covered.

A structured analysis and design has been
employed to design the package. C programming
language under MS Windows has been used in
the implementation.

Figure 1. Structured diagram of LOGIC-Minimiser

1338

LOGIC–Minimiser

Usefulness and Benefits
of LOGIC-Minimiser

For simplicity and ease of use, it has been de-
cided to implement LOGIC-Minimiser with a
menu-driven, keyboard-based interface with a
few menu options. The interface is self-explana-
tory, which makes the package well-suited for
both students and teachers for classroom use.
Therefore, the package can be an integral part
of a 2-hour session for teaching and learning
the Q-M method for logic gate minimization.
An in-class task will be given to the students to
produce a minimized logic diagram on paper.
After a prescribed period of time (for example, 20
minutes), LOGIC-Minimiser will be introduced
to the students on a step-by-step basis to verify
their solution and learn more about minimization
of Boolean expressions.

LOGIC-Minimiser provides the following
main benefits:

•	 Hands-on: It facilitates an interactive,
hands-on introduction to minimization of
Boolean expressions.

•	 Modelling: It provides a simple and easy
way to develop a variety of SOP functions
and models. Students can experiment with
minterms of various sizes and develop a
sound knowledge and understanding of
Boolean expression minimization.

•	 Ease of use: The use of a menu-driven in-
terface makes LOGIC-Minimiser easy to
use and a user-friendly tool. The software
can be easily installed and run on any PC
operating under MS Windows.

•	 Economical/usefulness: It enhances face-
to-face teaching with online learning and
can be used either in the classroom or at
home to provide hands-on experience.

•	 Robustness: It was tested on various PCs
across campuses and was found to be ro-
bust.

•	 Challenging: It provides an environment for
students to test their knowledge on Boolean
expression minimization.

Example of Classroom Plan

In this section we present a detailed lesson plan
(2-hour session) which can be used in teaching
and learning minimization of Boolean expres-
sions using LOGIC-Minimiser. The learning
outcomes focus on learning the Q-M algorithm
as well as use of the software tool for verifying
results of Boolean expression minimization. The
lesson plan incorporates a number of resources
and classroom activities, including revision of
Boolean expressions, brainstorming, teaching,
example, worksheet, demonstration of software
package, and use of the package to verify the
worksheet exercises.

Lesson Plan

Table 1 lists the learning outcomes, resources,
and various activities that can be conducted
in the classroom in teaching minimization of
Boolean expressions effectively. It can be used
for a 2-hour lecture session on the minimization
of Boolean expressions. The lesson plan includes
a guided worksheet (see Table 2) suitable for
classroom use.

How to Use the System

LOGIC-Minimiser is easy to use and can be run
from any PC operating under MS-DOS/Windows.
To run the package, the user can either double-click
on “newqm.exe” or type “newqm” at the DOS
prompt. The main steps of using this package
(from Windows) are summarized below:

 1339

LOGIC–Minimiser

By the end of this session students will be able to:
•	 Outline steps in minimization of Boolean expressions using Q-M algorithm.
•	 Use LOGIC-Minimiser to verify the minimization of Boolean expressions.
Resources
required

•	 LOGIC-Minimiser
•	 Data Show
•	 Computer Laboratory
•	 Whiteboard
•		 Worksheets

Time (minutes) Activity
10 Quickly review of Boolean expressions
5 Brain storming (ask the class what they know about Boolean expression

minimization)
15 Explain Q-M algorithm
5 LOGIC-Minimiser demonstration
15 Solve workout/example problems
10 Break
20 Worksheet Exercises (ask the class to work in pairs and solve worksheet exercises)
20 Use LOGIC-Minimiser and verify results of minimization (worksheet exercises)
10 Conclusion and checking learning outcomes

Review:
What went well:

What could be improved:

Table 1. Lesson plan (2-hour session with 10-minute break)

•	 Run: Double-click on “newqm.exe.”
•	 Entering minterms: Select the New option

to enter a new set of minterms. The user will
be prompted for the number of variables
to be used. After entering the appropriate
number of variables, a matrix of cells with
index numbers will appear on the screen. At
this point the user can enter each minterm
by selecting a cell by pressing the Enter key
on the keyboard.

•	 Accepting data: When a set of minterms has
been entered, press the F8 key to accept.

•	 Display diagram: The minimized logic-gate
diagram can be seen on the screen in graph-
ics mode. The user can zoom the diagram
using the F1, F2, and F3 keys for 100%,
50%, and 20% scaling, respectively. To go
back to main menu, press the F10 key.

•	 Display minterms and output: Select the
Min/Out option from the main menu to see

1340

LOGIC–Minimiser

Table 2. Boolean expression minimization worksheet

the list of minterms (that have been entered)
and the minimized output expression.

•	 Exit from the program: Select the Quit
option from the main menu to exit from the
program at any time.

Test Results

To evaluate the performance of LOGIC-Mini-
miser, the software has been installed on various
PCs and tested with various Boolean expres-

Consider the minimization of following logical function:
DCBADCBADCBADCBADCBADCBAF +++++=

The above function can be written as:
∑=)9,8,4,2,1,0(),,,(DCBAF

Where 0, 1, 2, 4, 8, 9 are the decimal values of the minterms.
It is required to apply the minimization on this Boolean function with the use of Quine-
McCluckey’s algorithm, firstly by hand and then verify the solution using LOGIC-
Minimiser.

Solution:

1. Write the first list as:

A B C D
0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
4 0 1 0 0
8 1 0 0 0
9 1 0 0 1

2. Deduce the second list (You have to complete this list)

A B C D
0,1 0 0 0 -
0,2
0,4
0,8
1,9
8,9 1 0 0 -

3. Third list (You have to do it all yourself)

A B C D
0,8,1,9

4. Now build the chart which relates minterms with the prime implicates as shown:
0 2 4 8 9

CBA .. X X

5. Now use the LOGIC-Minimiser to cross check your solution.

 1341

LOGIC–Minimiser

sions, each involving a different number of input
variables. Then the test results were validated
manually. Figure 2 shows a sample test result for
four-variable (A, B, C, and D) Boolean expres-
sion minimization. The following minterms were
entered from the keyboard: [0,2,3, 5,7,8,10,13,15],
and the software produced the simplified logic-gate
diagram as well as the output expression, as shown
in Figure 2.

Evaluation

An earlier version of LOGIC-Minimiser had been
presented at the National Advisory Committee on
Computing Qualifications conference in Napier,
New Zealand (Sarkar & Petrus, 2001). The dis-
cussion during the conference presentation was
quite encouraging, and many staff members from

various polytechnic institutions expressed their
interest in using the package in their classes.

To assess the educational value of LOGIC-Mi-
nimiser, we administered a survey to the students
of the introductory digital logic subject. The
survey was repeated for two consecutive years.
Overall results revealed that the majority of stu-
dents found the package useful and user-friendly,
with an overall rating of 4 out of 5.

The questionnaire also posed five open-ended
questions: (1) How well did you understand
minimization of Boolean expressions before
entering this course? (2) How easy did you find
the software package to use? (3) How well did the
package help in understanding the minimization of
Boolean expressions? (4) Would you like to have
more software tools of this kind as part of your
course? (5) Would you prefer to learn minimiza-
tion of Boolean expressions in a hybrid mode (i.e.,

Figure 2. Example of four-variable minimization with minimized output expression and logic gate
diagram

1342

LOGIC–Minimiser

minimization by hand and verification of results
by software tool)?

Concluding Remarks

A software tool (LOGIC-Minimiser) has been
developed that can be used in the classroom to
enhance the teaching and learning of various
aspects of Boolean expression minimization.
LOGIC-Minimiser is easy to use and can be run
from any computer operating under MS-DOS and
MS Windows. It was tested on various PCs and
was found to be robust. Many staff members from
various polytechnic institutions expressed their
interest in using the software in the classroom.

Currently, the system minimizes Boolean
expressions involving variables of size 8, which
is adequate for demonstration purposes. LOGIC-
Minimiser can easily be upgraded to accommo-
date variables of any length. User options such as
New, Min/Out, and Quit have been implemented.
More options such as Save, Load, and Help are
still under development, and incorporation of a
mouse-based user interface is also suggested for
future work.

LOGIC-Minimiser is available free of cost
to faculty interested in using it to supplement
their teaching. More information about LOGIC-
Minimiser can be obtained by contacting the
first author.

Summary

Boolean algebra, minimization of Boolean ex-
pressions, and logic gates are essential concepts
included in electronics, computer science, in-
formation technology, and engineering. These
concepts play a fundamental role in computer
hardware and digital systems design. We believe
that it is extremely important to incorporate
practical demonstrations into these courses to il-

lustrate theoretical concepts and therefore provide
an opportunity for hands-on experience. These
demonstrations will significantly enhance student
learning about Boolean expression minimization.
This chapter described the development and use of
LOGIC-Minimiser as an aid to enhance teaching
and learning Boolean expression minimization.
It was tested on various PCs and was found to
be robust.

Review Questions

1.	 List and describe three main features of
LOGIC-Minimiser.

2.	 Discuss the usefulness of LOGIC-Minimiser
in teaching and learning contexts.

3.	 Describe the main steps in the Q-M al-
gorithm for the minimization of Boolean
expressions.

4.	 Define the following key terms: Boolean
expression, logic gate, logic, minterms, and
K-maps.

5.	 Explain how LOGIC-Minimiser can be used
in the classroom for demonstration.

6.	 List and describe further enhancements to
LOGIC-Minimiser.

References

Anonymous. (2006). Digital Works. Retrieved
January 5, 2006, from http://www.spsu.edu/cs/
faculty/bbrown/circuits/howto.html

Bem, E. Z., & Petelczyc, L. (2003, February 19-23).
MiniMIPS: A simulation project for the computer
architecture laboratory. Paper presented at the
Proceedings of the 34th Technical Symposium
on Computer Science Education (SIGCSE‘03),
Reno, NV (pp. 64-68).

Burch, C. (2002). Logisim: A graphical system
for logic circuit design and simulation. Journal

 1343

LOGIC–Minimiser

of Educational and Resources in Computing,
2(1), 5-16.

Carothers, J. D. (2003). Quine-McCluskey al-
gorithm. Retrieved September 20, 2004, from
http://www.ece.arizona.edu/~csdl/474aslide4

Costa, A. (2004). Boolean functions simplifica-
tion (logic minimization). Retrieved December
27, 2004, from http://www.dei.isep.ipp.pt/~acc/
bfunc

Green, D. C. (1985). Digital techniques and sys-
tems (2nd ed.). Longman.

Greenfield, J. D. (1977). Practical digital design
using ICs. Wiley.

Grimsey, G. (2000). The truth, the whole truth,
and/or nothing but the truth. Journal of Applied
Computing & Information Technology, 4(1),
42-52.

Hacker, C., & Sitte, R. (2004). Interactive teach-
ing of elementary digital logic design with
WinLogiLab. IEEE Transactions on Education,
47(2), 196-203.

Hideout, G. (2003). The Quine-McCluskey method
of logic reduction. Retrieved September 20, 2004,
from http://www.geekhideout.com/qmm.shtml

Hintz, K. (2003). Quine-McCluskey method. Re-
trieved September 20, from http://www.cpe.gmu.
edu/courses/ece331/lectures/331_8/sld001.htm

Ibbett, R. N. (2002, June 24-26). WWW visualiza-
tion of computer architecture simulations. Paper
presented at the 7th annual SIGCSE conference
on Innovation and Technology in Computer
Science Education (ITiCSE), Aarhus, Denmark
(pp. 247).

Leathrum, J. F. (2003). Quine McCluskey tabular
minimization method. Retrieved September 20,
2004, from http://www.ece.odu.edu/~leathrum/
ECE241_284/support/quine.html

Leva, A. (2003). A hands-on experimental labo-
ratory for undergraduate courses in automatic
control. IEEE Transactions on Education, 46(2),
263-272.

Lockwood, J. W. (2003). Quine-McClusky
algorithm; computational techniques; cygwin
freeware (GPL) tools. Retrieved September 20,
2004, from http://www.arl.wustl.edu/~lockwood/
class/coe460/

LogicWorks. (1999). Capilano Computing Systems
Ltd. Retrieved January 10, 2006, from http://www.
logicworks4.com

Mano, M. (1984). Digital design. Prentice Hall.

Sarkar, N., & Petrus, K. (2001, July 2-5). Logic
gate minimization demonstration. Paper presented
at the 14th annual conference of the National Ad-
visory Committee on Computing Qualifications
(NACCQ), Napier, New Zealand (p. 456).

Sarkar, N., Petrus, K., & Hossain, H. (2001, July
2-5). Software implementation of the Quine-Mc-
Cluskey algorithm for logic gate minimization.
Paper presented at the 14th annual conference of
the National Advisory Committee on Computing
Qualifications (NACCQ), Napier, New Zealand
(pp. 375-378).

Shelburne, B. (2003). Teaching computer organi-
zation using a PDP-8 simulator. Paper presented
at the SIGCSE‘03 Technical Symposium on
Computer Science Education (pp. 69-73).

Tanenbaum, A. S. (1999). Structured computer
organization (4th ed.). Prentice Hall.

Williams, R. D., Klenke, R. H., & Aylor, J. H.
(2003). Teaching computer design using virtual
prototyping. IEEE Transactions on Education,
46(2), 296-301.

1344

LOGIC–Minimiser

Key Terms and Definitions

Boolean Expression: An expression which re-
sults in a Boolean (binary or TRUE/FALSE) value.
For example 4 > 3 is a Boolean expression. All
expressions that contain relational operators like
>, <, and so forth are Boolean. Logical gates and
their combinations are used to implement physical
representations of Boolean expressions.

K-Maps: This term refers to Karnaugh
maps, a logical minimization method based on
graphical representation of Boolean functions in
which each row in the truth table of the Boolean
function is represented as a box. Unlike the truth
table, K- map values of input must be ordered
such that the values of adjacent columns vary by
one single bit.

Logic Gate: An electronic device (based
on transistors) used for implementing logical
functions. The inputs and outputs of the gate are
Boolean (i.e., binary) values. Gates can be used
to implement various Boolean functions. NOT
gates take one input and have one output. The
AND, NAND, OR, and NOR gates may take two
or more inputs and have one output. XOR gates
take two inputs and have one output. Logical
functions are all combinational functions, that is,
their output depends on the input. Gates can also
be used to implement latches and flip-flops which
have an internal state and are used to implement
sequential logical systems.

Logic Minimization: Simplification of Bool-
ean expressions with the aim of reducing the
number of logical gates. This is done by reducing
the number of minterms into a number of prime
implicants in which as many variables as pos-
sible are eliminated. The tabular method makes
repeated use of the rule Ā + A = 1.

LOGIC-Minimiser: Software package devel-
oped at the Auckland University of Technology
to enhance teaching and learning minimization
of Boolean expressions. The package was imple-
mented in C programming language.

Minterms: This term refers to the product of
Boolean variables. These variables can appear
either as themselves or their inverses. A minterm
corresponds to exactly one row in the truth table
of the Boolean function. If we have four variables
A, B, C, and D, then a minterm can be something
like A.B.C.D or .B.C.D, and so forth.

Quine-McCluskey Algorithm: Table-based
reduction method for simplification of Boolean
expressions. This method is quite versatile as
compared with other algorithms. It can handle any
number of inputs and can easily be implemented
on machines. The method starts from the truth
table of the Boolean function.

Sum of Product (SOP): A two-level expres-
sion which represents a sum of minterms of a
logical function. It is two-level because it is imple-
mented by two layers of logic gates. The first level
represents the product of Boolean variables of the
logical function and the second level represents
summing the products with OR operator.

This work was previously published in Tools for Teaching Computer Networking and Hardware Concepts, edited by N. Sarker,
pp. 303-318, copyright 2006 by Information Science Publishing (an imprint of IGI Global).

