
Developing and Investigating
Online Programming Resources

Andrew Petersen
Department of Mathematical and Computational Sciences
University of Toronto
andrew.petersen@utoronto.ca

Goals

§  Introduce two of my areas of research

–  Investigating the student experience in introductory

computer science (CS1)

–  Identifying student difficulties with coding exercises (using
empirical methods)

Goals

§  Introduce two of my areas of research

–  Investigating the student experience in introductory

computer science (CS1)

–  Identifying student difficulties with coding exercises (using
empirical methods)

§  Describe an example of the active use of research in

course and curriculum (re-)development

Timeline
2007: First year (CS1) redesigned (in Python) based around “live”
coding in courses and pair-programming in labs

~2010: Student attrition is identified as a concern

2010-11: Interviews conducted with students in CS1
 PCRS developed to support Peer Instruction (PI) in CSC108

2013: Coursera MOOC leads to generation of videos for CS1
 CS1 offerings include “hybrid” and online versions

2014: CS1 resources enhanced with Ontario government support
 Digital design (258) incorporates online resources

2015: Systems programming (209) moves to a hybrid format
 Databases (343) incorporate online resources

2016 (planned): CS3 moves to a hybrid format

A Student Perspective on Prior
Experience in CS1

Anya Tafliovich, Jennifer Campbell, Andrew Petersen
SIGCSE 2013

Context

§  Prior experience (PE) mattered* in our CS1

§  Fail rate:
–  15% (with PE) vs 31% (without)

§  Marks:
–  Students with PE scored half a letter grade better

* We are currently re-running this study, so in a few months, I may be able to tell you to what extent it still matters.

Our CS1
Python-based, in an objects-late structure

§  Programming concepts:
–  Variable assignment
–  Conditionals
–  Counted and conditional loops
–  Functions

§  Software process
–  Testing and test-driven design
–  Modular design

§  Some “intro to CS” topics
–  Complexity, simple algorithms

CS1: Structure

§  12 week term
–  3 1-hour lectures per week
–  1 2-hour closed lab per week

§  The lab utilizes pair programming
–  2 students at 1 computer
–  The driver operates the computer
–  The navigator focuses on design and looks ahead to

identify issues

§  Pair programming was enforced by the TA
§  The lab handout specifies when students switch roles

Methodology

§  Applied a student focused approach
–  Demographic survey at the beginning of the course
–  2 semi-structured interviews (30 minutes) after CS1 and

again after CS2

Methodology

§  Interviews were coded using a grounded theory
methodology
–  All investigators coded a subset of interviews
–  Codes converged after two rounds of discussion and

coding

§  Each interview was coded by 2 investigators and
merged, when necessary, by the third

§  Codes were aggregated and then themes were
identified through manual categorization

Research Questions

§  How does PE affect peer interaction?

§  What are students’ beliefs on the relationship
between PE and success in the course?

Research Questions

§  How does PE affect peer interaction?

§  What are students’ beliefs on the relationship
between PE and success in the course?

PE and Peer Interaction
Students reported four venues for interaction:

1.  In class conversations: usually informal, and
occasionally “overheard”

2.  Closed labs: forced pairing for pair programming

3.  Assignment partnerships: either pre-existing
relationships or based on interactions in class/lab

4.  Online discussion board: mostly just questions about
course material

PE and Peer Interaction

Partnership success often hinged on perception of
ability, and early in the course, PE determined ability.

1.  Successful partnerships: Students have similar PE /
perceived similar ability levels

2.  Failed partnerships: Perceived skill levels were
different

3.  Choosing to program solo

A Successful Partnership

“There were two people I tried to work with ... We had
the same level of understanding, so we could work
through the exercises together. No rushing ahead or
feeling slowed down.”

“On the third assignment, I just picked a partner who
had relatively the same skills that I do. We kind of
shared the work and had lots of debates and stuff, like
you know people have, and, well, it turned out good.”

These students passed.

A Failed Partnership

“My partners knew a lot more than I did, and I didn’t
want to slow them down ... so I didn’t learn anything.”

“I cruised with this one guy ... about half of the labs ...
He had done some Java before, so he knew what to do.
He did most of the labs, and I watched ... I [hurt]
myself for the tests ... I didn’t know what I didn’t know
until I started the test.”

“I tried to work with a partner, but more or less they
either didn’t do anything or they just watched me. Or
they just looked at the screen.”

Choosing to Program Solo

Many successful students chose to program solo after
experiencing or observing a failed partnership.

•  This reinforced feelings of isolation in some cases.

“I just want to do the things by myself so that I will
have the confidence and then I will feel more
comfortable.”

“The last assignment was on your own, which was good
because you are not really depending on anyone else,
so you know that you can do the stuff yourself.”

Research Questions

§  How does PE affect peer interaction?

§  What are students’ beliefs on the relationship
between PE and success in the course?

PE and Success

§  Students universally believed PE helped

§  Some students articulated the advantage as
“knowing how much time is required”

§  Other students claimed that experience lead to
confidence and that confidence was the key
advantage.

Peers with PE

§  Many interviews talked about a “group of experts”
–  They were highly visible, in particular on the discussion

board
–  They were generally described as being “very few” and

having “tons of experience”

§  Some interviewees thought they were beneficial
–  Answering questions on the discussion board
–  Providing a goal / target

Peers with PE

§  Many interviews talked about a “group of experts”
–  They were highly visible, in particular on the discussion

board
–  They were generally described as being “very few” and

having “tons of experience”

§  Some interviewees thought they were harmful
–  They were intimidating: how can you compete?
–  They dominated the discussion

Peers with PE

§  Many interviews talked about a “group of experts”
–  They were highly visible, in particular on the discussion

board
–  They were generally described as being “very few” and

having “tons of experience”

§  But we never identified them.
–  Every interviewee agreed they existed.
–  None of our interviewees identified with being in this group
–  It’s possible that PE was being used as a reason for

someone else’s perceived success / ability

Summary

§  How does PE affect peer interaction?
–  The most successful groups had similar ability levels
–  Students who experience or observed a bad pair frequently

chose to work alone

§  What are students’ beliefs on the relationship
between PE and success in the course?
–  Students might be conflating PE and success
–  Students attributed PE to students who demonstrated

knowledge or success
–  Everyone saw someone else with more experience

Impact on our CS1

§  Our courses changed significantly in 2013
–  Shifted to an hybrid (inverted) format without required labs
–  Significant effort was spent on online resources
–  In class time was spent on active learning

§  The interview study was one of several factors
–  In 2012, U of T encouraged the development of MOOCS
–  For several years, we had been shifting towards the use of

PI and other active pedagogies

Timeline
2007: First year (CS1) redesigned (in Python) based around “live”
coding in courses and pair-programming in labs

~2010: Student attrition is identified as a concern

2010-11: Interviews conducted with students in CS1
 PCRS developed to support Peer Instruction (PI) in CSC108

2013: Coursera MOOC leads to generation of videos for CS1
 CS1 offerings include “hybrid” and online versions

2014: CS1 resources enhanced with Ontario government support
 Digital design (258) incorporates online resources

2015: Systems programming (209) moves to a hybrid format
 Databases (343) incorporate online resources

2016 (planned): CS3 moves to a hybrid format

Timeline
2007: First year (CS1) redesigned (in Python) based around “live”
coding in courses and pair-programming in labs

~2010: Student attrition is identified as a concern

2010-11: Interviews conducted with students in CS1
 PCRS developed for Peer Instruction (PI) in CS1

2013: Coursera MOOC leads to generation of videos for CS1
 CS1 offerings include “hybrid” and online versions

2014: CS1 resources enhanced with Ontario government support
 Digital design (258) incorporates online resources

2015: Systems programming (209) moves to a hybrid format (gov’t)
 Databases (343) incorporate online resources

2016 (planned): CS3 moves to a hybrid format with U of T support

Timeline
2007: First year (CS1) redesigned (in Python) based around “live”
coding in courses and pair-programming in labs

~2010: Student attrition is identified as a concern

2010-11: Interviews conducted with students in CS1
 PCRS developed for Peer Instruction (PI) in CS1

2013: Coursera MOOC leads to generation of videos for CS1
 CS1 offerings include “hybrid” and online versions

2014: CS1 resources enhanced with Ontario government support
 Digital design (258) incorporates online resources

2015: Systems programming (209) moves to a hybrid format (gov’t)
 Databases (343) incorporate online resources

2016 (planned): CS3 moves to a hybrid format with U of T support

Timeline
2007: First year (CS1) redesigned (in Python) based around “live”
coding in courses and pair-programming in labs

~2010: Student attrition is identified as a concern

2010-11: Interviews conducted with students in CS1
 PCRS developed for Peer Instruction (PI) in CS1

2013: Coursera MOOC leads to generation of videos for CS1
 CS1 offerings include “hybrid” and online versions

2014: CS1 resources enhanced with Ontario government support
 Digital design (258) incorporates online resources

2015: Systems programming (209) moves to a hybrid format (gov’t)
 Databases (343) incorporate online resources

2016 (planned): CS3 moves to a hybrid format with U of T support

Facilitating Code-Writing in PI
Courses

Dan Zingaro, Olessia Karpova, Yuliya Cherenkova,
Andrew Petersen
SIGCSE 2013

What is Peer Instruction (PI)?

§  Active learning pedagogy developed for physics

§  Instead of traditional lectures …
–  Teacher poses multiple choice question (MCQ)
–  Individual vote: students vote on their own
–  Students discuss in small groups
–  Group vote: students vote again
–  Teacher conducts whole class discussion

§  In a 50 minute course, you might expect 2-3 of these
cycles.

Why PI?

§  Research shows considerable gains between the
individual and group vote
–  e.g., 51% correct on solo, 63% on group1

§  Normalized gain (NG) is the typical metric

–  NG is the proportion of students that answer incorrectly
that subsequently answer correctly

–  Typical reported NG values are 30-40%1,2

1.  D. Zingaro. Experience report: Peer instruction in remedial computer science. Proceedings of the 22nd World Conference on
Educational Multimedia, Hypermedia & Telecommunications, pages 5030–5035, 2010.

2.  B. Simon, M. Kohanfars, J. Lee, K. Tamayo, and Q. Cutts. Experience report: Peer instruction in introductory computing. Proceedings
of the 41st SIGCSE Technical Symposium on Computer Science Education, pages 341–345, 2010.

PI and Code Writing
§  MCQs require code reading and tracing.

–  Could also write Parson’s problems MCQs.

§  But what if we want students to write code?
–  Code writing is often the focus of exams
–  Evidence suggests that code reading and tracing are

prerequisites for code writing – but don’t imply that a student can
write code.1,2

§  Immediate, formative feedback – for both students and
instructors – is critical for the learning process.

1.  M. Lopez, J. Whalley, P. Robbins, and R. Lister. Relationships between reading, tracing and writing skills in
introductory programming. Proceedings of the 4th International Workshop on Computing Education Research,
pages 101-112, 2008.

2.  L. Murphy, S. Fitzgerald, R. Lister, and R. McCauley. Ability to ‘explain in plain English’ linked to proficiency in
computer-based programming. Proceedings of the 9th International Conference on International Computing
Education Research, pages 111-118, 2012

PCRS

§  We developed a web tool to support instructors’ use
of PI in class
–  … for programming courses

§  Students use portable devices to answer questions
posed by the instructor.

§  Submissions are marked automatically, and the
results of tests are used as a proxy for a MCQ choice.

… Things Have Changed

What is PCRS anyway?
§  2010: Python Classroom Response System

§  2012: Python Course Resource System

§  2014: Programming Course Resource System

The changing titles match our understanding of what
our courses needed.

https://mcs.utm.utoronto.ca/~pcrs/pcrs/

PCRS in 2016

§  Currently in use in four courses at U of T
–  ~5000 users per term

§  Two other universities use PCRS materials

§  Moving activities online, with logging, has created
new research opportunities
–  Student (ab)use of multiple choice questions
–  Opportunities for mining submissions to code exercises
–  …

Employing Multiple-Answer
Multiple Choice Questions

Andrew Petersen, Michelle Craig, Paul Denny
ITiCSE 2016: Tips and Tricks session

Multiple-Answer Multiple-Choice

§  We noticed that in our formative, online context,
students guess to circumvent the system.
–  Students can submit as many times as necessary.
–  The system provides immediate feedback.

§  We deployed multiple-answer multiple-choice
questions to deter guessing.

Impact of MAMCQs

§  Previous criticisms of MAMCQs apply less in CS
–  Writing unambiguous stems and options is easier in a

programming context.

§  The problems reduce guessing
§  The facility of our MAMC problems is .44 – more

appropriate for formative feedback

§  Questions written to cover “topic areas” may be
effective predictors of exam performance

Student Difficulties with Pointer
Concepts in C

Michelle Craig, Andrew Petersen
ACE 2016

A Pointer Concept Taxonomy

*pt = w pt = &wv = *pt + 2

*pt = *pt + 2

A Pointer Concept Taxonomy
v = 5

v = w

*pt = w pt = &w

v = v + 2

v = *pt + 2

*pt = *pt + 2

A Pointer Concept Taxonomy
v = 5

v = w

*pt = w pt = &w

v = v + 2

v = *pt + 2

*pt = *pt + 2

•  Double pointers
•  Pointers as

parameters to
functions

•  Pointers and
arrays

•  Pointer
arithmetic

Context
§  The Course

–  2nd year C and systems programming class
–  taught for many years to 100's of students

§  The Lab
–  Online delivery & submission of weekly labs
–  Drop-in help centre lightly used
–  Coding exercises and select all that apply (MAMCQ)

§  Lots of data (every time they press submit)
–  341 students consented to participate
–  over 10,000 submissions (code and MAMCQ)

Testing the Pointer Taxonomy
§  Created MAMCQ questions to match

taxonomy
§  Two versions (pre & post)

–  Two treatment groups to validate equivalency

§  Metrics for performance?
–  Unlimited attempts with no penalty
–  No marks for partially correct answers
–  Interested in relative performance per option

Testing the Pointer Taxonomy
§  Created MAMCQ questions to match taxonomy
§  Two versions (pre & post)

–  Two treatment groups to validate equivalency
§  Metrics for performance?

–  Unlimited attempts with no penalty
–  No marks for partially correct answers
–  Interested in relative performance per option

Testing the Pointer Taxonomy
§  Created MAMCQ questions to match taxonomy
§  Two versions (pre & post)

–  Two treatment groups to validate equivalency

§  Metrics for performance?
–  Unlimited attempts with no penalty
–  No marks for partially correct answers
–  Interested in the relative performance per option

Metrics for Performance on MAMCQ

§  Churn
–  How many times does the student flip this option’s answer?

§  Last to Change
–  In what percentage of the students is this the last option

fixed to get a fully correct submission?

Metrics for Performance on MAMCQ

§  Churn
–  How many times does the student flip this option’s answer?

§  Last to Change
–  In what percentage of the students, is this the last option

fixed to get a fully correct submission?

Metrics for Performance on MAMCQ

§  Churn
–  How many times does the student flip this option’s answer?

§  Last to Change
–  In what percentage of the students, is this the last option

fixed to get a fully correct submission?

Pointer Concept Difficulty
Concept Code Cor Churn Until Last

Assign a constant to a non-
pointer

v = 5; 95 0.19 0.56 3

Assign a non-pointer to a non-
pointer

v = w; 92 0.31 0.84 7

Update a non-pointer v = v + 2; 94 0.21 0.62 6

Assign to a pointer pt = &w; 92 0.32 0.87 10

Dereference on the LHS *pt = w; 84 0.41 1.2 19

Dereference on the RHS v = *pt + 2; 88 0.40 1.1 13

Dereference LHS & RHS *pt = *pt + 2; 89 0.34 1.1 12

Pointer Concept Difficulty
Concept Code Cor Churn Until Last

Assign a constant to a non-
pointer

v = 5; 95 0.19 0.56 3

Assign a non-pointer to a non-
pointer

v = w; 92 0.31 0.84 7

Update a non-pointer v = v + 2; 94 0.21 0.62 6

Assign to a pointer pt = &w; 92 0.32 0.87 10

Dereference on the LHS *pt = w; 84 0.41 1.2 19

Dereference on the RHS v = *pt + 2; 88 0.40 1.1 13

Dereference LHS & RHS *pt = *pt + 2; 89 0.34 1.1 12

Pointer Concept Difficulty
Concept Code Cor Churn Until Last

Assign a constant to a non-
pointer

v = 5; 95 0.19 0.56 3

Update a non-pointer v = v + 2; 94 0.21 0.62 6

Assign a non-pointer to a non-
pointer

v = w; 92 0.31 0.84 7

Assign to a pointer pt = &w; 92 0.32 0.87 10

Dereference LHS & RHS *pt = *pt + 2; 89 0.34 1.1 12

Dereference on the RHS v = *pt + 2; 88 0.40 1.1 13

Dereference on the LHS *pt = w; 84 0.41 1.2 19

Pointer Concept Difficulty
Concept Code Cor Churn Until Last

Assign a constant to a non-
pointer

v = 5; 95 0.19 0.56 3

Update a non-pointer v = v + 2; 94 0.21 0.62 6

Assign a non-pointer to a non-
pointer

v = w; 92 0.31 0.84 7

Assign to a pointer pt = &w; 92 0.32 0.87 10

Dereference LHS & RHS *pt = *pt + 2; 89 0.34 1.1 12

Dereference on the RHS v = *pt + 2; 88 0.40 1.1 13

Dereference on the LHS *pt = w; 84 0.41 1.2 19

Pointer Concept Difficulty
Concept Code Cor Churn Until Last

Assign a constant to a non-
pointer

v = 5; 95 0.19 0.56 3

Update a non-pointer v = v + 2; 94 0.21 0.62 6

Assign a non-pointer to a non-
pointer

v = w; 92 0.31 0.84 7

Assign to a pointer pt = &w; 92 0.32 0.87 10

Dereference LHS & RHS *pt = *pt + 2; 89 0.34 1.1 12

Dereference on the RHS v = *pt + 2; 88 0.40 1.1 13

Dereference on the LHS *pt = w; 84 0.41 1.2 19

Pointer Concept Difficulty
Concept Code Cor Churn Until Last

Assign a constant to a non-
pointer

v = 5; 95 0.19 0.56 3

Update a non-pointer v = v + 2; 94 0.21 0.62 6

Assign a non-pointer to a non-
pointer

v = w; 92 0.31 0.84 7

Assign to a pointer pt = &w; 92 0.32 0.87 10

Dereference LHS & RHS *pt = *pt + 2; 89 0.34 1.1 12

Dereference on the RHS v = *pt + 2; 88 0.40 1.1 13

Dereference on the LHS *pt = w; 84 0.41 1.2 19

Pointer Concept Difficulty
Concept Code Cor Churn Until Last

Dereference LHS & RHS *pt = *pt + 2; 89 0.34 1.1 12

Dereference on the RHS v = *pt + 2; 88 0.40 1.1 13

Dereference on the LHS *pt = w; 84 0.41 1.2 19

Symmetric Dereference Easier

§  After completing the lab, all four metrics showed that
symmetric dereference was easier

§  Analysis of lab revealed …

Symmetric Dereference Easier

§  After completing the lab, all four metrics showed that
symmetric dereference was easier

§  Analysis of lab revealed …

NO questions required RHS or LHS dereference alone

Declaring and Assigning Pointers
 int main(int argc, char ** argv) {
 int friends = atoi(argv[1]);
 char *arch_enemy = argv[2];
 /* Create a variable called friends_ptr and
 * set it to point to friends.
 * Create a variable enemy_ptr and set it
 * to point to the location where
 * arch_enemy is stored.
 */

 return 0;

}

Declaring and Assigning Pointers
 int main(int argc, char ** argv) {
 int friends = atoi(argv[1]);
 char *arch_enemy = argv[2];
 /* Create a variable called friends_ptr and
 * set it to point to friends.
 * Create a variable enemy_ptr and set it
 * to point to the location where
 * arch_enemy is stored.
 */
 int *friends_ptr = &friends;
 char **enemy_ptr = &arch_enemy;
 return 0;

}

Common Declaration Errors
Error Example % Students

Defining incorrect pointer type
 ... char * instead of char **
 ... failing to declare a pointer
 ... int * instead of char **

char *enemy_ptr;
char enemy_ptr;
int *enemy_ptr;

81
53
31

Common Declaration Errors

§  Most of these errors are revealed on the char pointer
§  They result from a guessing process for solving the

exercise.

Error Example % Students

Defining incorrect pointer type
 ... char * instead of char **
 ... failing to declare a pointer
 ... int * instead of char **

char *enemy_ptr;
char enemy_ptr;
int *enemy_ptr;

81
53
31

Common Declaration Errors

§  Most of these errors are revealed on the char pointer
§  They result from a guessing process for solving the

exercise.

char *enemy_ptr = arch_enemy;

format ‘%s’ expects argument of type ‘char *’, but
argument 2 has type ‘int’

Error Example % Students

Defining incorrect pointer type
 ... char * instead of char **
 ... failing to declare a pointer
 ... int * instead of char **

char *enemy_ptr;
char enemy_ptr;
int *enemy_ptr;

81
53
31

Common Declaration Errors

§  Most of these errors are revealed on the char pointer
§  They result from a guessing process for solving the

exercise.

char *enemy_ptr = arch_enemy; à
int *enemy_ptr = arch_enemy;

Type mismatch

Error Example % Students

Defining incorrect pointer type
 ... char * instead of char **
 ... failing to declare a pointer
 ... int * instead of char **

char *enemy_ptr;
char enemy_ptr;
int *enemy_ptr;

81
53
31

Common Declaration Errors

§  Most of these errors are revealed on the char pointer
§  They result from a guessing process for solving the

exercise.

char *enemy_ptr = arch_enemy; à
int *enemy_ptr = arch_enemy; à
int *enemy_ptr = *arch_enemy; à
char enemy_ptr = arch_enemy; …

Error Example % Students

Defining incorrect pointer type
 ... char * instead of char **
 ... failing to declare a pointer
 ... int * instead of char **

char *enemy_ptr;
char enemy_ptr;
int *enemy_ptr;

81
53
31

Common Assignment Errors
Error Example % Students

Defining incorrect pointer type
 ... char * instead of char **
 ... failing to declare a pointer
 ... int * instead of char **

char *enemy_ptr;
char enemy_ptr;
int *enemy_ptr;

81
53
31

Missing ‘&’ operator
… = arch_enemy;
… = friends;

62
35

Extraneous ‘*’ operator
… = *arch_enemy;
*enemy_ptr = ...

25
18

Combining the ‘&’ and ‘*’ operators … = &*arch_enemy; 25

Functions with Pointer Parameters
/* Write a void function invest that takes your
 * money and multiplies it by the rate */

int main(int argc, char ** argv) {
 double principle = atof(argv[1]);
 double rate = atof(argv[2]);
 invest(&principle, rate);
 printf("%.2f\n",principle);
 return 0;
}

§  Note: Students previously solved a problem that had them call

a very similar function.

Functions with Pointer Parameters
/* Write a void function invest that takes your
 * money and multiplies it by the rate */
void invest(double *v1, double v2) {
 *v1 = *v1 * v2;
}
int main(int argc, char ** argv) {
 double principle = atof(argv[1]);
 double rate = atof(argv[2]);
 invest(&principle, rate);
 printf("%.2f\n",principle);

 return 0;

}

Common Parameter Errors

§  Okay, so the most common error isn’t actually a
parameter error …

total = v1 * v2;

invalid operands to binary expression
('double' and 'double *')

Error Example % Students

Missing Dereference … = v1 * v2; 27

Common Parameter Errors

§  Okay, so the most common error isn’t actually a
parameter error …

total = v1 * v2; à
*total = *v1 * *v2;

§  But it demonstrates how students preferentially apply

operators symmetrically to try to resolve errors.

Error Example % Students

Missing Dereference … = v1 * v2; 27

Dereference Double … *v2 … 11

Common Parameter Errors

§  Students tended to pick non-pointer parameters, if
they made an error in the parameters.

§  They often attempted to correct the error by making
both parameters into pointers.

Error Example % Students

Missing Dereference … = v1 * v2; 27

Incorrect Parameter Type
 ... too few pointers
 ... too many pointers
 ... int, not double

invest(double, double)
invest(double*, double*)
invest(double*, int)

19
14
13

Dereference Double … *v2 … 11

Takeaways

... Students favor symmetric solutions
 ... and *a = *a + b does not test *a = b or x = *a

Takeaways

... Students favor symmetric solutions
 ... and *a = *a + b does not test *a = b or x = *a

... Many students use a guess-and-check process if their
first attempt is incorrect
 ... The feedback they receive can lead them in very
incorrect directions

Takeaways

... Students favor symmetric solutions
 ... and *a = *a + b does not test *a = b or x = *a

... Many students use a guess-and-check process if their
first attempt is incorrect
 ... The feedback they receive can lead them in very
incorrect directions

… Having a taxonomy is extremely valuable
 … Identify topics that are missed
 ... Building tests that cover every topic

Summary

Education Research and Teaching

Shifting from a model of “scholarly teaching” to one of
active scholarship has changed the game for U of T

§  Scholarly teaching creates opportunities for research

–  And the research performed is relevant and authentic

§  Research feedback yields courses of higher quality
–  Instructors have incentives to remain “current”
–  Redesigned courses require engaged faculty

Why the Continuous Redesign?

§  Research
–  Initially, we were swayed by active learning research
–  Later, our own research was compelling

§  Opportunity
–  Provincial and university funds were available for the creation of

online resources

§  Peer and Institutional Pressure
–  The department has a strong teaching culture – and we drive

each other
–  The institution made a concerted effort to reward innovation

Why the Continuous Redesign?

§  Research
–  Initially, we were swayed by active learning research
–  Later, our own research was compelling

§  Opportunity
–  Provincial and university funds were available for the creation of

online resources

§  Peer and Institutional Pressure
–  The department has a strong teaching culture – and we drive

each other
–  The institution made a concerted effort to reward innovation

Drop me a line!

http://andrewpetersen.info/
andrew.petersen@utoronto.ca

I’m in Auckland until mid-June and would love to chat
… especially if you know someone who is graduating

Backup Slides: Results of Flipping

Results?

Horton, Campbell, and Craig have studied this since 2013.

1. Comparing Outcomes in Inverted and Traditional CS1
http://dl.acm.org/citation.cfm?id=2677273

2. Online CS1: Who Enrols, Why, and How Do They Do?
http://dl.acm.org/citation.cfm?id=2844578

3. Drop, Fail, Pass, and Continue: Persistence in CS1 …
http://dl.acm.org/citation.cfm?id=2591752

Success Rates remain Constant but
the Paths to Success Differ

From Horton and Craig. “Drop, Fail, Pass, Continue: Persistence in CS1 and Beyond in Traditional and Inverted
Delivery.” In Proceedings of the 46th ACM Technical Symposium on Computer Science Education, 2015.

The left are from the traditional offering.
The right are from the inverted offering.

Other Observations

§  Students appreciated the online materials.
–  In particular, they started valuing lecture less when online

materials became available.

§  Students in the inverted offering tended to do much
better on the final, summative assessment.

§  Online courses tend to attract students from outside
of the major.
–  … and enthusiasm for the course increased, too.

Reflections

§  The cost of producing materials and running these
courses is significant.
–  Early efforts were not appropriately resourced.

§  We’ve had to develop in-house experience in developing
tools and online content.
–  Central support is useful – but local expertise is necessary, too.

§  As of 2016, we appear to be entering a new phase of re-
development.
–  We’re not just tweaking: courses are being redesigned to take

advantage of new resources.

